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Abstract (199 words) 

 
The discovery of a new kind of experience can teach an agent what that kind of experience is 

like. Such a discovery can be epistemically transformative, teaching an agent something they 

could not have learned without having that kind of experience. However, learning something 

new does not always require new experience. In some cases, an agent can merely expand their 

existing knowledge using, e.g., inference or imagination that draws on prior knowledge. We 

present a computational framework, grounded in the language of partially observable Markov 

Decision Processes (POMDPs), to formalize this distinction. We propose that epistemically 

transformative experiences leave a measurable “signature” distinguishing them from 

experiences that are not epistemically transformative. For epistemically transformative 

experiences, learning in a new environment may be comparable to “learning from scratch” 

(since prior knowledge is obsolete). In contrast, for experiences that are not transformative, 

learning in a new environment can be facilitated by prior knowledge of that same kind (since 

new knowledge can be built upon the old). We demonstrate this in a synthetic experiment 

inspired by Edwin Abbott’s Flatland, where an agent learns to navigate a 2D world and is 

subsequently transferred either to a 3D world (epistemically transformative change) or to an 

expanded 2D world (epistemically non-transformative change). Beyond the contribution to 

understanding epistemic change, our work shows how tools in computational cognitive science 

can formalize and evaluate philosophical intuitions in new ways. 

 

Keywords: Computational framework; epistemic change; learning; transformative experience  
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1. Introduction 

 
Consider a colorblind person who, after an eye operation, sees red for the first time. They 

discover something new: they now know what it’s like to see red. Philosophers (Jackson, 1986, 

Lewis, 1990; Paul, 2014) have argued that the discovery of this type of  “what it’s like” 

knowledge requires experience, for a person cannot know what it is like to see red without 

having the experience of seeing red. The change in experience brings a change in epistemic 

status. Our colorblind individual’s discovery of  red experience gives them knowledge of what it 

is like to see red, manifested in part by a change in their abilities to perform certain tasks, such 

as the ability to imagine, distinguish between, and classify red things.4  

Gaining new “what it’s like” knowledge does not always require new experience (for 

philosophical discussion, see Kind 2020). For example, to know what it’s like to taste a novel 

combination of two familiar tastes may not require new experience, as the agent could infer this 

based on their prior experience. Consider the possibility of tasting an avocado-raspberry 

milkshake. Previous work suggests that retrieving memories of each of these can facilitate 

imaginative evaluation of the novel combination (e.g., Barron et al., 2013). If so, a person can 

projectively imagine or infer what the novel combination tastes like without having actually 

experienced it. In this sense, pre-existing knowledge of what it’s like to taste avocado, to taste 

raspberry, and to taste a milkshake can help us imaginatively infer the taste of an avocado-

raspberry milkshake; intuitively, the agent projectively combines knowledge they already have. 

In contrast, for a formerly colorblind individual to discover what it is like to see red, they must 

 
4 The classic Jackson (1986) version of this thought experiment concerns Mary, a “super-knower” who 
knows all the scientific truths that could be known, living in a highly stylized context where we have 
reached the end of all scientific enquiry, and where, in particular, she knows every physical truth about 
the brain that could be known. The debate is thus focused on whether Mary, as a super-knower, can infer 
the phenomenal truths from all the physical truths she knows, without leaving her black and white room. 
This is not the context we are exploring: we are interested in real life contexts, so our Mary is a rather 
“ordinary Mary” who knows as much about the world as, say, a contemporary scientist knows. We also 
note that we are merely using the phrase “what it’s like” as a synonym for “phenomenal character”: we are 
not invoking or endorsing the existence of “qualia.” (We thank a referee for pressing us to make these 
clarifications.)  
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have direct experience of seeing red; the knowledge cannot be generated merely by combining 

elements of what is already known. In the “seeing red” case, the relevant new knowledge is not 

accessible to the individual (neither by imagination nor by inference).  

We hypothesize that the difference here stems from differences between the kinds of 

human experiences involved. Taking a page from the metaphysics of natural kinds, we can think 

of experiences in terms of natural experience kinds, grouping experiences into kinds based on 

their (natural) experiential similarities. One can have the new experience of seeing red, and this 

is of a different kind from previous experiences of seeing green. Conversely, one can have the 

new experience of tasting an avocado-raspberry-milkshake, but this is not relevantly different 

from previous experiences of tasting avocados, tasting raspberries, and tasting milkshakes. The 

latter is not a new kind of experience; it is merely a new variant of a familiar species of 

experience. 

For this reason, experience seems to be necessary for our colorblind individual to know 

what it is like to see red, while experience does not seem to be necessary (for a person with prior 

experience of tasting avocados, raspberries, and milkshakes) to know what it’s like to taste an 

avocado-raspberry-milkshake. If so, experience can be necessary, in certain contexts, for an 

individual to learn new things. 

We can describe the discovery of a new kind of experience and the distinctive type of 

learning it brings as “epistemically transformative” learning (Paul, 2014). In this paper, we 

propose a computational framework, grounded in the language of Partially Observable Markov 

Decision Processes (POMDPs), for identifying when the discovery of a new kind of experience 

triggers epistemically transformative learning. In particular, we propose that epistemically 

transformative learning (where the relevant knowledge could not have been extrapolated from 

prior knowledge, so requires a new kind of experience) leaves a distinct and measurable 

“signature” that distinguishes it from non-transformative learning (where the relevant 

knowledge could have been extrapolated, at least partially, from prior knowledge). Here we 
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present an initial validation of this theory with a pair of case studies. Importantly, we do not aim 

to provide an exhaustive definition of epistemic transformation, nor do we provide necessary or 

sufficient conditions for learning to be considered epistemically transformative. Rather, we 

argue that certain learning patterns are frequently indicative of epistemically transformative 

learning, and demonstrate how these patterns can be formalized and quantified in a 

computational framework. 

The remainder of this paper is organized as follows: first, we provide a brief overview of 

POMDPs and motivate how they can capture the relevant markers of epistemic transformation. 

We present our formal framework and describe how it can distinguish epistemically 

transformative from non-transformative learning. We then apply the framework to a pair of case 

studies inspired by Edwin Abbott’s Flatland (Abbott, 1987), which follows an agent living in a 

two-dimensional world who suddenly acquires the ability to perceive in 3D (Section 2). Through 

a series of simulations, we demonstrate how this epistemically transformative learning has a 

particular “signature” that distinguishes it from non-transformative learning (Section 3). We 

then propose a method for analyzing how exactly the agent’s knowledge is changed (Section 4), 

and what distinguishes this change in knowledge between the transformative and non-

transformative cases, and then assess this computational framework against human intuitions 

(Section 5). 

1.1 POMDPs as a framework for epistemic change 

To formalize the distinction between epistemically transformative and non-

transformative learning, we used partially observable Markov decision processes (or POMDPs), 

a framework for modeling how agents act in the world under uncertainty (Cassandra, 1998; 

Sutton & Barto, 1998). We begin with a brief review of POMDPs (a more extended introduction 

can be found in Cassandra, 1999) and then turn to the way we will use POMDPs in the current 

study to explore how and when new experiences lead to changes in knowledge. 
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1.1.1 Brief introduction to POMDPs. At a high level, POMDPs represent interactive 

environments where an agent takes extended sequences of actions that typically incur costs 

(e.g., when moving in space), generate rewards (e.g., when completing a goal), and affect the 

agent’s beliefs about the state of the world (by providing new information based on, e.g., what 

the agent can and cannot see). The space of possible world states is represented as a discrete 

finite state space S, where each state represents a full configuration of the world (such that the 

environment is always in one of the states from the state space). The agent’s possible behaviors 

are represented as a discrete finite action space A, and the dynamics of how actions affect the 

world are represented by a transition function T that specifies how the world probabilistically 

changes from one state to another given a particular action (e.g., taking action ‘eat an apple’ in a 

world state where the agent is standing next to the apple is likely to transition the environment 

to the world state where the apple is now gone).  

Critically, a POMDP agent has only partial access to the true state of the world (e.g., an 

agent might know that there are two boxes in the room, but not know what is inside each box). 

We can represent an agent’s beliefs about the state of the world as a probability distribution over 

the state space S, such that a uniform distribution over S captures full ignorance while 

concentrating all the probability on a single state captures full confidence. This representation is 

dynamic and changes as the agent interacts with the world. To achieve this, POMDPs formalize 

a discrete finite observation space O, which specifies all the possible pieces of information that 

an agent might receive, and an observation function that defines what information an agent 

receives as a function of world states and actions (e.g., taking action ‘open box’ could produce an 

‘empty’ or ‘full’ observation, depending on whether there is an object in the box or not). As the 

agent receives information about the world, it updates its beliefs rationally using Bayesian 

inference, by considering what states are most likely to explain the observations.  

Finally, the agent’s actions in the world produce costs and rewards. For instance, an 

agent could incur a cost for every movement it takes and obtain a reward for every object it 
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collects. Given these specifications (state space, action space, observation space, reward 

function, transition function, and observation function), it is possible to compute how an agent 

ought to behave to maximize its long-term rewards (with the addition of a future discount 

parameter that specifies how much to prioritize short-term rewards over long-term ones). This 

normative plan, called a policy, captures the agent’s knowledge of how to navigate the world to 

achieve its goals.  

Because the term ‘knowledge’ may mean different things across disciplines, we note that 

the POMDP framework involves two distinct kinds of epistemic representations: the first is the 

agent’s representation of the possible states of the world (i.e.: how the world might be), encoded 

by the aforementioned probability distribution P(S) over world-states. The second is the agent’s 

representation of how best to navigate that world in pursuit of a goal, encoded by the 

aforementioned policy. The “knowledge change” we aim to capture in our framework refers to 

the latter: given a change in the way the agent experiences the world, the key question is how the 

agent adapts their strategy for navigating the world (i.e.: their policy). To avoid confusion, and 

to maintain consistency with standard POMDP terminology, we refer to the agent’s 

representation of possible world-states (P(S)) as beliefs, and the representation of how to 

navigate the world (policy) as knowledge.  

1.1.2 Capturing epistemic change in POMDPs. Returning to our question of interest, our 

goal is to specify how a new kind of experience brings a change in knowledge. To do this, we 

propose using POMDPs to measure the degree to which an agent’s prior knowledge (i.e.: the 

initial policy for solving the POMDP task) is useful for adapting to a new kind of experience. 

 In the context of POMDPs, we formalize a change in the agent’s experience (e.g., seeing 

a new color) as a change in the observation space (the experiences an agent can have). For 

example, for an agent who can only see in greyscale, a newfound ability to see color might 

correspond to an additional dimension of information in the agent’s world-state representation. 

This change in experience might enable new strategies previously unavailable to the agent (such 
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as comparing two objects by color), leading the agent to adapt their policy to incorporate these 

new capacities.   We equate this change in policy with a change in the agent’s knowledge.  If this 

change in knowledge is epistemically transformative, then the agent’s initial policy (prior 

knowledge) should not be useful for learning the new policy—and thus, the new policy replaces 

the old policy. On the other hand, if a change in knowledge is non-transformative, the agent 

should be able to extrapolate the new policy (at least partially) from the old policy. Of course, 

ultimately, this is a graded rather than binary distinction: a new experience may require either a 

complete overhaul of the agent’s knowledge or a slight modification of existing knowledge, but it 

may also involve just the replacement of some knowledge and minor adjustments to other 

knowledge.  

To this end, we propose that whether a new experience is epistemically transformative is 

reflected by how much learning must occur to adjust the policy, in addition to the way the policy 

is adjusted, after a new experience. Crucially, our proposal is not a raw measure of the total 

learning time required, but a comparison between the time required to learn the new policy 

using the original policy, relative to the time required to learn the new policy without the 

knowledge encoded in the original policy. That is, we will calculate the amount of learning 

needed to update an agent’s policy after a change in their experience, and we will compare it to 

the amount of learning that would be needed to build this new policy from scratch. Under this 

formulation, we can distinguish changes in experience that allow the agent to leverage their 

original policy when learning the new policy, with much of previous knowledge still applying, 

from those that require an effective replacement of the policy, such that the past knowledge 

carries no advantage relative to an agent learning how to act from scratch. We define a change in 

knowledge as “epistemically transformative” if the amount of learning required to update the 

policy is comparable to the amount of learning required to learn the policy from scratch. This is 

the empirical signature of epistemically transformative learning that we propose in our 

framework.  
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For example, consider again seeing red for the first time. We could first train an agent to 

fulfill its goals in a world where it cannot see red (i.e., train an agent to build a policy in a world 

without red experiences). Once the policy is built, we can give the agent access to red experience, 

and measure how much learning occurs when the agent updates its policy in light of this new 

kind of experience. To test whether this learning is epistemically transformative in the relevant 

sense, we compare the amount of learning that occurs in this update to the amount of learning 

required for an agent to build its initial policy in a world with the color red (using a “naive” 

agent, that is, one that has not been pre-trained in a world where it cannot see red). If the 

amount of learning in the case where the agent updates is comparable to the amount of learning 

in the case where the agent is naïve, this suggests that the knowledge change is epistemically 

transformative. Note that within this formulation, it is possible for an experience to be 

epistemically transformative even if the total learning time to acquire the new policy is not very 

large, and, conversely, it is possible for an experience to be non-transformative even if the 

adaption requires a significant amount of learning time. Thus, the key measure is not the total 

time required to learn the new policy, but the advantage to learning granted by the agent’s prior 

knowledge. We recognize that this does not eliminate all questions about how to identify 

epistemic transformation, but we take our framework to provide an important start towards 

grounding these questions in precise computational terms as opposed to giving the final word 

on the subject. 

1.1.3 Measuring learning across changes. Building a POMDP policy is computationally 

expensive, and research in the last two decades has produced several different learning 

algorithms that learn approximate solutions efficiently (Hsu et al., 2008; Kurniawati et al., 

2008; Ng & Jordan, 2013). Here we use the SARSOP algorithm (Successive Approximations of 

the Reachable Space under Optimal Policies; Kurniawati et al., 2008). SARSOP, like all POMDP 

solvers, consists of an iterative process that sequentially refines the policy until convergence 

(i.e., sequentially modifying the policy across iterations until the changes are small enough that 
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they become inconsequential to the agent’s behavior). For our work, the critical element of 

SARSOP is that it only learns the subset of the policy needed to act under plausible knowledge 

states that a rational agent might have (whereas a complete POMDP policy specifies how an 

agent should act under any arbitrary knowledge state, including ones that an agent might never 

be under in practice). Using the SARSOP algorithm, we will use total computation time in 

training as a proxy for the amount of learning an agent has to go through: suppose that an agent 

has already learned a policy for solving a task in some POMDP environment. After learning this 

policy, the agent undergoes a change in how they experience that environment (e.g.: gaining the 

ability to perceive a new color), and must adjust their policy to incorporate this new experience. 

The key question underlying our framework is, to what degree is the agent able to leverage their 

pre-existing knowledge (i.e.: original policy) in order to adapt to this new experience (i.e.: learn 

a new policy)? If the agent can simply make adjustments to their original policy in order to 

adapt (i.e.: it does not require a lot of additional learning given the original policy), then the 

experience is considered non-transformative. If the original policy is useless, (i.e.: the prior 

knowledge does not improve the agent’s learning time at all), then the experience is considered 

transformative.  

In order to formalize this notion in the POMDP framework, we must translate this 

comparison into something that can be captured via the agent’s learning time. To this end, we 

compare the time it takes an agent to adapt their existing knowledge (original policy) to this new 

experience against the time it takes for the agent to learn a new policy without any useful prior 

knowledge. In our approach, an agent learning to act in a new environment is building 

knowledge (i.e., constructing a policy from a new set of experiences, when there was no previous 

experience or knowledge), whereas an agent obtaining a new experience after having learned to 

act in the environment  is modifying existing knowledge (i.e., revising an existing policy). These 

two computations are not directly comparable, since the amount of knowledge that the agents 

are working with are already not the same to begin with: the former requires quantifying the 
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computation needed to build knowledge from scratch, while the latter requires quantifying the 

computation needed to modify one knowledge structure into another. To address this, we always 

compared our main agent (i.e., the agent that learns to act in an environment and then 

undergoes an experience change) to a ‘scrambled knowledge agent’. This scrambled knowledge 

agent is identical to the main agent in all respects, such that we give the scrambled knowledge 

agent the same policy given to the main agent — except that we scrambled the information in the 

policy (i.e.: randomly permuted the agent’s mapping from belief states to actions). This is 

designed to control for the concern about comparability: the “scrambled” agent is initialized 

with the same amount of knowledge as the main agent, but the content of this knowledge is 

useless (such that, like the main agent, it must replace the existing policy to adapt it to the new 

world). Therefore, the scrambled knowledge agent has the same amount of knowledge as the 

main agent but, by construction, this knowledge contains no useful information.  

1.2 Evaluating our computational proposal 

Our starting point for creating a world in which we could simulate transformative versus 

non-transformative experiences is Edwin Abbott’s Flatland (Abbott, 1987). Flatland follows an 

agent that lives in a two-dimensional world, such that any object in the world is perceived 

simply as a line. In this world, it is possible to identify objects by moving around them. For 

instance, a circle will be seen as a line of constant size as the agent circles it, whereas a square 

will be seen as a line that expands and contracts. Identifying objects in a 2D world therefore 

requires a type of behavioral competence that is not useful for agents living in a 3D 

environment. A 3D experience brings a new kind of visual experience and with it, new 

behavioral competencies. We characterize the move from a 2D to a 3D world as an epistemically 

transformative experience. We hypothesize that when the agent transitions into a 3D world, this 

new kind of visual experience leads to new knowledge, such that the agent’s prior knowledge (a 

policy for navigating the 2D environment) is minimally useful in learning to navigate the 3D 

environment. Our case study starts with an agent who learns to identify objects in a 2D 
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environment, and considers what knowledge is added when a 3rd dimension is added (a 

transformative change), versus when new regions of the 2D environment are unlocked (a non-

transformative change). We are comparing an agent who discovers a new kind of experience and 

thus a new kind of knowledge (3D knowledge) to an agent that is merely expanding or 

developing a familiar kind of knowledge (2D knowledge). 

In Section 2, we present the basic specifications of our computational framework and 

validate our method of initializing agents with prior knowledge from a previous world (e.g. 

initializing a 3D agent with 2D knowledge). In Section 3, we demonstrate through computation 

times during training that moving from a 2D to a 3D world is a kind of change that requires an 

agent to effectively learn from scratch while moving to an “expanded” 2D environment enables 

the agent to usefully extrapolate from prior knowledge. In Section 4, we show that differences in 

relative computation time translate to qualitative differences in the underlying agents’ policies. 

Altogether, these computational experiments provide the initial evidence for our formalization 

of epistemically transformative learning. 

 

2. Modeling New Experiences in POMDPs 

 
 Before turning to our validation and case studies, here we present details for how we 

implement the basic 2D world structure in a POMDP. 

2.1 POMDP specifications 

 Throughout, we consider events where an agent is navigating a 10x10 world that contains 

one of four possible objects: a 2x4 rectangle (Figure 1a), a 2x2 square (Figure 1b), a 3x2 

rectangle (Figure 1c), or a 4x2 rectangle (Figure 1d). The agent’s goal is to identify which of the 

four objects is in the world, and it can navigate around the space to see it from different fields of 

view. Below we specify the details of this environment, which serves as the basis for the two case 

studies in the current project. The modifications of these basic settings to produce different 
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categorical changes in the agent’s experience will be described in more detail in the respective 

sections (a more complete presentation is available in supplementary materials). 

 

Figure 1. Possible objects in the two-dimensional world: (a) 2x4 rectangle. (b) 2x2 square. (c) 
3x2 rectangle. (d) 4x2 rectangle.  
 

● State space. In this setting, each state encodes the agent’s position in space (as an x 

and y coordinate) as well as the direction that they are looking at (north, south, east, or 

west), which of the four objects is in the scene, and its position in the 10x10x2 world. We 

also include a terminal state that represents that the simulation has been terminated. 

(And in a 2D world, the second dimension is effectively inaccessible to the agent.) 

● Action space. The action space consists of five movement actions (move north, south, 

east, or west, and ‘jump’), five rotation actions (look north, south, east, or west, and ‘look 

down’), and four judgment actions (each a guess about which of four objects is in the 

world).  

● Transition function. We use a deterministic transition function, where the agent’s 

actions always produce a consistent and predictable state change. Specifically, the 

agent’s actions are always guaranteed to be successful (e.g., the action ‘move north’ 

changes the world to a state where the agent has shifted one position to the north), 
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except for when the agent attempts to walk past a physical border (e.g., trying to move 

north at the northern edge of the world), which produces no state change. (And in a 2D 

world, jumping to another dimension and looking down also produced no state changes 

for the two-dimensional agent.) Finally, when the agent takes a judgment action (i.e., 

guessing what object is in the world), the state always transitions to the terminal state. 

This creates a problem structure where the agent knows that it will have only one 

opportunity to guess the identity of the object. 

● Costs and rewards. All movements and rotations cost –0.10. Correct guesses yielded a 

reward of 2000, while incorrect guesses yielded a cost of –1000. The small movement 

and rotation cost was introduced so that the planner favors the most efficient strategies 

for identifying the object. The cost and rewards of guessing were set to be 

disproportionately large to avoid cases where an agent might find it more rational to 

guess prematurely due to the cost associated with identifying the nature of the object. 

● Observation space and function. We model the agent’s observations as a binary 

vector that captures the agent’s field of view. Specifically, we consider a resolution of five 

bits, such that the observations always consist of five binary values, each one indicating 

whether an object is in view or not. For instance, in Figure 2a the observation would be 

[0,0,1,1,1], whereas in Figure 2b it would be [0,0,0,0,0]. 

● Initial beliefs. Throughout, we assume that the agent always knows their position and 

orientation but does not know which of the four objects is in the scene. Formally, the 

probability of any state with incorrect agent information (i.e., wrong position or 

orientation) is initialized to 0, and a uniform distribution is used for the remaining states 

(i.e., the states of the world where the agent has the right location and orientation 

information, but where the object in the scene can be different). 
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Figure 2. (a) The orange circle represents the agent, and the five line segments together 
represent the agent’s field of view. Blue segments do not intersect with any object, while red 
segments intersect with the object in view. (b) Initial position and orientation of the 2D-Agent. 
 
2.2 Measuring Learning 

 To build the policy, we used the approximate POMDP planning toolkit (APPL), which 

implements the SARSOP algorithm (Kurniawati et al., 2008). Throughout, we used computation 

time as a proxy for the amount of computation. To make all computation times comparable, 

each simulation was always run on an isolated dedicated core on a high-performance computing 

cluster. Therefore, the exact computation times will vary depending on which system the models 

are run on, but the relative times preserve the relative amount of computation that was 

necessary. 

We first ran a series of cases that show how the average computation time needed for 

convergence works as a proxy of how much an agent’s knowledge needs to be revised. We 

trained a naïve agent to identify objects in a 2D world (Section 2.1), then partially ablated the 

agent’s knowledge, and measured how long it would take to re-learn the full policy after the 

agent lost 25%, 50%, or 75% of its knowledge. We predicted that the stronger the ablation, the 

more computation time would be required to re-learn how to navigate the 2D world, therefore 

showing that the average computation time is a proxy for how much useful knowledge is 

contained in a policy. 

 Formally, after training the agent’s policy (i.e., training it to navigate a 2D world with the 

goal of identifying the object in a scene), we randomly froze a subset of the policy according to 
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the ablation parameter (e.g., freezing 25% of the policy in the 75% knowledge-loss condition), 

and then scrambled all remaining values of the policy (see supplementary materials for detailed 

explanation), and then used this ablated policy as the starting point to re-train the POMDP, 

measuring the average computation time needed to fix the policy. Because the exact 

computation time will depend on the random subset of knowledge that is frozen, we ran each 

ablation study 1000 times, randomly ablating a different subset on each trial.  

Figure 3 shows the average computation time required to re-learn the policy as a 

function of each ablation. As predicted, average computation time increased as a function of the 

magnitude of the ablation. On average, the model required 30.07 s when 25% of the knowledge 

was retained (95% CI: 29.00–31.14), 26.60 s when 50% of the knowledge was retained (95% CI: 

25.95–27.24), and 18.48 s when 75% of the knowledge was retained (95% CI: 18.14–18.83). 

Moreover, the amount of knowledge was a significant predictor of the average computation time 

needed to relearn the policy (β=–0.23; p<.001). Thus, the average computation time needed to 

learn a policy can capture the amount of knowledge that was useful in the previous policy. 

 

Figure 3. Average computation time (in seconds) for models initialized with varying percentages 
of the solution computed with the naïve agent. The y-axis depicts the average computation time 
over 1000 trials. Error bars reflect 95% confidence intervals. 
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3. Evidence for Restructuring? 

 
We then explored whether the knowledge contained in a policy designed to identify 

objects in a 2D world would confer an advantage when undergoing different types of new 

experiences reflecting changes in the world. In one case study, an agent enters a new 3D world 

(“New Dimension” condition), whereas in another case study, the agent enters a new expanded 

2D+ world (“Expanded World” condition). The final training structure is therefore as follows: 

First, we obtain the computation time needed for an agent to learn how to navigate the initial 2D 

world. We then test how this agent’s knowledge changes when it is either (1) transferred into a 

3D world, or (2) transferred into an 2D+ world, by obtaining the computation time required for 

the agent to learn how to navigate the new environment. We then compare this learning against 

an agent learning to navigate these worlds, initialized with scrambled knowledge from the 

original agent (to control for the amount of information stored in the agent’s policies). In 

particular, in the move from one world to another, new actions and observations may become 

exploitable by the agents in a way that was not available before the move.  As such, agent 

policies may be dramatically different across the 3D and 2D+ worlds.  Thus, it is important to 

interpret computation times when an agent is initiated with prior knowledge relative to the case 

when the agent is initiated with the same amount of information that is then scrambled to 

mimic learning from scratch.  If our intuitions are correct, we expect that the computation time 

required for the agent to learn a policy in the 3D world should be roughly equal to the 

computation time required for a “scrambled” agent to learn a policy in the 3D world, thus 

indicating that, when moving to a 3D world, the agent’s prior knowledge (i.e., policy for 

navigating the 2D world) was not useful for learning to navigate the 3D world. Conversely, when 

moving from a 2D environment to another 2D environment with a larger grid, we expect that 

the “scrambled” agent should take significantly longer to learn a policy than the non-scrambled 
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agent, indicating that the agent’s prior knowledge was useful for learning to navigate the new 

environment. 

 The overall method and agents followed the logic of our validation study (Section 2.2). 

For the New Dimension condition, the agent now had access to the additional actions ‘move up’ 

and ‘look down’, the transition function was extended accordingly (following the same 

deterministic structure as in the 2D world), and the observation space was extended to include 

four new observations, which corresponded to the experience of seeing the object from the third 

dimension. These observations were only available to the agent when it jumped out of the 2D 

space (to the top layer of the world), and took the action ‘look down’. For the Expanded World 

condition, the state space was extended to cover a 12x12x2 2D world (see Figure 4b). The action 

space, transition function, observation space, and observation function were extended in a 

straightforward manner so that it followed the same principles as the simpler 10x10 2D world. 

(Thus, whereas the state space remains the same size when moving from the 2D to the 3D world 

[both 10x10x2], the state space increases when moving from the 2D to the 2D+ world.)  
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Figure 4. (a) An agent in a 3D world. (b) An agent in the expanded world. (c) Results in the New 
Dimension condition comparing agents initialized with full prior knowledge versus scrambled 
knowledge. (d) Results in the Expanded Dimension condition comparing agents initialized with 
full prior knowledge versus scrambled knowledge. The y-axis depicts the average computation 
time (in seconds) over 1000 trials. Error bars reflect 95% confidence intervals. 
 

Per the final training structure we described above, we trained a naïve agent to identify 

objects in our basic 2D world. We then initialized the main agent in the New Dimension and 

Expanded World conditions with the solution of the naive agent trained in the basic 2D world. 

We compared the computation time of the main agents in the New Dimension and Expanded 

World conditions to the computation time of their scrambled knowledge agent counterparts. We 

predicted that the computation times of the main agent in the New Dimension condition would 

be no different from the computation times of its corresponding scrambled knowledge agent, 

indicating that the previous knowledge from the 2D world would not be useful for learning to 

navigate the 3D world. In contrast, the computation times of the main agent in the Expanded 

World condition would be shorter compared to the computation times of its corresponding 

scrambled knowledge agent, as the knowledge of how to navigate the 2D world should still be 
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useful for navigating another 2D world with a larger grid. Each condition was run 1000 times to 

obtain a probability distribution over how much learning would be required. Altogether, this is 

effectively a 2x2 design, where we look at computation times as a function of change (New 

Dimension vs. Expanded World) and knowledge (Full vs. Scrambled). 

Figure 4c-d shows the average computation time required to re-learn the policy as a 

function of change (New Dimension vs. Expanded World) and type of knowledge (Full vs. 

Scrambled). In the New Dimension condition (Figure 4c), we found no signature of 

extrapolation from prior knowledge, such that average computation time when the main agent 

was initialized with prior knowledge was not reliably different from the average computation 

time when the main agent was initialized with scrambled knowledge (6.70 s [95% CI: 6.57–6.83] 

vs. 6.78 s [95% CI: 6.63–6.92], t(1998)=0.79, p=.429). That is, an agent with full competence 

acting in a 2D world takes the same amount of time to learn how to act in a 3D world as an agent 

that had no prior competence. This was in contrast to results from the Expanded World 

condition (Figure 4d), in which average computation time significantly decreased when the 

main agent was initialized with full prior knowledge, compared to the average computation time 

when the main agent was initialized with scrambled knowledge (8.35 s [95% CI: 8.14–8.56] vs. 

73.05 s [95% CI: 69.74–76.37], t(1998)=48.29, p<.001).   

Such a comparison might seem striking, given it only takes around 6-7 s for the agent to 

learn in the 3D world, across both the full knowledge and scrambled knowledge cases, compared 

to almost 80 seconds to learn a policy from scratch in the 2D+ world. But the discrepancy can be 

explained by going back to the main (epistemic) goal of the agent in this world, which is to learn 

what objects are in the world it is in. In light of this goal, an agent in the 3D world needs only to 

jump up to the new dimension and look down from a bird’s eye view. This is in contrast to an 

agent in a 2D (and 2D+) world that needs to move around the (even expanded) world to learn 

what objects are in the world. In this case, the agent with competence acting in a 2D world 
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learned how to act in the expanded world over eight times faster than an agent that lacked that 

competence. 

These results altogether show that, while knowledge from the 2D world was useful for 

the agent in the 2D+ world, it did not provide any benefit when the agent moved to the 3D 

world. This does not mean that the agent in the 3D world was necessarily worse off, since 

moving to the 3D world unlocked new abilities (such as jumping up and looking down) for the 

3D agent that were initially not useful for the agent when it was just in the 2D world. In other 

words, these new abilities may have facilitated the agent’s goal of learning what objects are in its 

world. We can relate this result back to the example of how seeing red for the first time can be 

epistemically transformative — in that it may unlock new abilities (e.g., being able to separate 

the red socks from the green socks for the first time while doing laundry). These results show 

that our framework can capture the idea that a change from a 2D to a 3D environment is 

epistemically transformative, whereas the expansion of a world (with a similar structure) 

cannot. An agent discovering a distinctively new kind of experience is effectively “learning from 

scratch.” 

 

4. What gets restructured? 

 
Thus far, we have suggested that a change in the agent’s knowledge of the world (e.g., 

gaining access to a new kind of perceptual experience via 3D information) is epistemically 

transformative to the degree that it requires an agent to effectively learn their policy from 

scratch. We validated this by demonstrating that, after gaining access to 3D information, the 

agent’s prior knowledge (a policy for navigating the 2D world) was not useful for learning to 

navigate the 3D world: the agent that started with a 2D policy took just as long to learn a 3D 

policy as the agent that started with a completely scrambled policy.  
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Note, however, that our learning-time measure does not reveal the content of what the 

agent learns after gaining 3D experience, only that the original 2D policy is not useful for 

learning a 3D policy (but was useful for learning a policy in the expanded 2D+ world). While 

this satisfies our main goal to identify an empirical signature that indicates when and to what 

degree a change in experience is epistemically transformative, it is worth asking what exactly the 

3D agent is learning, and what is distinctive about this knowledge as compared to the 2D+ 

agent. That is, what is it about the 3D policy that renders the agent’s prior knowledge (original 

2D policy) so useless? Here we propose a way of comparing two different policies for navigating 

the same environment. We use this additional measure to explore how the observed differences 

in learning time reflect actual underlying changes in the agent’s policy. 

 To this end, it is necessary to introduce a few more details about how POMDPs 

represent knowledge internally. In the standard POMDP framework, an agent’s policy — i.e., its 

knowledge about how to act — is encoded by a function that assigns a value to each action under 

any possible knowledge state. Intuitively, if the agent knows the true state of the world s, then 

the value of taking action a in state s reflects how much “closer” to the goal the agent will be 

after taking action a: the closer a gets you to a rewarding state from state s, the higher its value 

in state s. In a POMDP, however, the agent does not know the true state of the world, and 

represents their uncertainty as a probability distribution P(S) over possible world states, which 

gets updated by the agent’s new observation after each action. Thus, for a POMDP agent, the 

value of taking action a in belief state P(S) reflects an expectation about how close action a will 

get the agent to the goal state. Importantly, “closeness” in a POMDP can reflect both spatial 

proximity (e.g., getting physically closer to a goal object) and epistemic proximity (e.g., 

becoming more certain about where a goal object is located). In our 2D task, for example, the 

agent’s goal is to correctly guess which object is in the grid, so the value of taking action a in 

belief state P(S) is closely tied to the expected reduction in uncertainty that would result from 

the ensuing observation.   
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Given a value function that assigns a value to each action x belief-state pair, the optimal 

policy is to deterministically choose the action with the highest value in each belief state. While 

this is useful in some domains like robotics (where the concern is getting an agent to behave 

optimally in an environment), these fully optimized, deterministic agents are less useful for 

developing descriptive models of actual human behavior, which is frequently noisy and 

suboptimal. To relax this assumption, we can create a probabilistic policy that allows an agent to 

make different choices from the same belief state. This is commonly achieved by transforming 

the value function over actions into a probability distribution using SoftMax (see Jara-Ettinger, 

Baker, Ullman, & Tenenbaum, in press; for details). 

A SoftMax function converts a vector of real numbers into a vector of probabilities in 

such a way that preserves the ordinality of the original numbers (i.e., if v=(a,b) and 

SoftMax(v)=(pa, pb), then pa > pb if and only if a>b). Thus, under a SoftMax policy, actions with 

higher expected values are more likely to be selected than actions with lower expected values. 

Importantly, the softMax function includes a temperature parameter (call it T) which controls 

how deterministic the policy is. For very small values of T, the policy is nearly deterministic, 

meaning that the agent will almost always choose the action with the highest expected value. 

When T is very large, the policy is nearly uniformly random, so that each action is equally likely 

to be selected. While the exact value of T is not important for the analysis that follows, the 

crucial point is that we can represent the agent’s policy as a set of probability distributions over 

actions, one for each possible belief state, and that the probability associated with each action is 

directly correlated to the expected value of that action (given the belief state). This allows us to 

compare two different policies for the same POMDP world by comparing the probability 

distributions over actions in corresponding belief states.  

For our purposes, we must characterize three different comparisons. First, we must 

characterize how the agent’s policy changes after we modify the environment from 2D to 3D. 

Second, we must characterize how the agent’s policy changes after we modify the environment 
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from 2D to 2D+ (by expanding the grid). Finally, we must characterize how the change in policy 

from 2D to 3D differs from the change in policy from 2D to 2D+. To make the comparisons 

between policies, we use Kullback-Liebler (KL) divergence, a standard measure of divergence 

between probability distributions. Intuitively, if P and Q are two different probability 

distributions over actions, then KL(P, Q) reflects the “surprisal” of an agent who believes that 

distribution P represents the best way to act observing the behavior of an agent who believes 

that distribution Q is the best way to act.  

 
 

 
 

Figure 5. (a) KL divergence values for each state comparing action distributions of the 2D-agent 
versus the 3D-agent (darker blue reflects lower KL divergence, while lighter blue reflects higher 
KL divergence). Rectangular outlines reflect the different possible objects in the world. Note that 
action distributions are defined for each belief state, so the value in each cell reflects the average 
KL divergence overall belief states corresponding to that cell. (b) KL divergence values for each 
state comparing action distributions of the 2D-agent versus the 2D+ agent. (c) KL divergence 
values for the 2D-agent vs. the 3D-agent, plotted as a function of distance from the border. KL 
divergence decreases as a function of distance from the border. (d) KL divergence values for the 
2D-agent vs. the 2D+ agent, plotted as a function of distance from the border. KL divergence 
decreases as a function of distance from the border. 
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With this established, our analysis works as follows. We first quantify the difference 

between the original 2D policy and the newly learned 3D policy by computing, for each belief 

state, the KL divergence between the 2D action distribution and the 3D action distribution, and 

then repeat this using the 2D policy and 2D+ policy. Figure 5a-b depicts the average KL 

divergence value for each cell in the environment (recall that KL divergences are computed for 

each belief state, so to visualize these values in a 2D grid, we average KL divergences across all 

belief states within the same grid location). A quick inspection of this figure already reveals clear 

differences in where the changes in the agent’s action distributions are occurring in different 

locations around the grid. In particular, for the 2D vs. the 3D agent (Figure 5a), the action 

distributions differ the most for belief states around the border of the grid (shown as lighter blue 

squares on the edges) — which is in contrast to the 2D vs. 2D+ agent case (Figure 5b), where the 

action distributions differ the most for the central states. This difference was further verified by 

plotting the KL divergence values in the 3D-agent and 2D+ agent cases against the distance of 

the state from the border. This shows an inverse relationship, where KL divergence decreases 

with distance from the border in the 3D-agent case (Figure 5c; Pearson’s r=-.41, p<.001), but 

increases with distance from the border in the 2D+ agent case (Figure 5d; Pearson’s r=.45, 

p<.001). 

This analysis suggests that where the agent is on the grid matters for understanding the 

change in the agent’s policy. To recall our introductory example, where our colorblind agent is 

suddenly able to see the color red, it seems plausible that this change in their experience would 

have the greatest impact on their behavior in states of the world where the newfound ability to 

see red is relevant: if they are reading a black-and-white newspaper, it seems unlikely that being 

able to see red would significantly alter how they approach this task. On the other hand, if our 

agent is navigating a fruit market and trying to determine which pieces of fruit are ripe, the 

ability to see red would enable a host of new strategies for achieving this goal, and would likely 

have a much greater impact on their behavior. Thus, in addition to characterizing how the 
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agent’s policy changes within each state, our analysis should also reflect how important each 

state is to the agent’s task: changes to the policy in more task-relevant states should be more 

indicative of epistemic transformation than changes to the policy in task-irrelevant states. 

To obtain a proxy measure for how “task-relevant” a particular state is, we estimated 

how frequently the agent visited each state under each policy by selecting a random starting 

point for the agent 500 times and simulating the agent’s policy forward until completion. This 

yielded a tally of how many times each agent visited each state, depicted in Figure 6a-b. Since 

the POMDP agent navigates by probabilistically selecting higher-value states, the frequency with 

which the agent visits a given state can be interpreted as a proxy for how “important” that state 

is to its goals. In our object identification task, the agent has access to a wider, unobstructed 

viewpoint of the object from cells closer to the edge of the grid than from cells closer to the 

center of the grid, reflected in Figure 6a-b by the higher visit frequencies along the left and 

bottom borders as compared to the center. Thus, cells closer to these edges are higher-value 

with respect to this task. Figure 6c-d shows the same KL divergence values from Figure 5a-b, 

with each value weighted by the frequency with which that state was visited.  

To obtain a final measure of how much the policy changed when moving from a 2D to 3D 

world, we took the KL divergence between action distributions for each state, and averaged 

these values across states, weighting each value by the frequency with which the agent visited 

that state. This gives us an aggregate measure of how much the agent’s policy changed when 

moving from 2D to 3D, with more “important” states being more heavily weighted than less 

“important” states. We then repeated this procedure for the agent that moved from a 2D to a 

2D+ world, to enable a direct comparison between the amount of policy change experienced 

when moving to a 3D world and the amount of policy change experienced when moving to an 

expanded 2D+ world. This analysis reveals that there is a significant difference between the 

average KL divergence when weighted by state frequency visit in the 3D-agent case than in the 
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2D+ case (Figure 6e; M=.024 vs. M=.004, t(7996)=32.48, p<.001), suggesting a greater degree 

of policy change in the 2D-to-3D case as compared to the 2D-to-2D+ case. 

 

Figure 6. (a) Frequencies with which the particular state was visited in the 3D-world. (b) 
Frequencies with which the particular state was visited in the 2D+ world. (c) KL divergence 
values weighted by state visit frequency for the 2D-agent vs. the 3D-agent. (d) KL divergence 
values weighted by state visit frequency for the 2D-agent vs. the 2D+ agent. (e) Mean weighted 
KL values in the 2D vs. 3D-agent contrast versus the 2D vs. 2D+ agent contrast. Mean KL 
divergence was significantly greater when moving to a 3D-world, compared to a 2D+ world. 
 

Altogether, our initial analysis in Section 3 revealed that going from a 2D to a 3D world 

involves an epistemically transformative change in the sense that the 2D agent’s prior 

knowledge conferred no advantage when re-learning a policy for the 3D world. The frequency-
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weighted KL divergence measure in this section further reveals that this re-learning is occurring 

for the higher-value border states that the agent visits more frequently (and are therefore more 

important to solving the task). Thus, this analysis reveals something further about where the 

agent’s knowledge is being restructured: in the 2D to 2D+ case, changes to the agent’s policy are 

concentrated in the center of the grid, but the higher-value (and more frequently visited) states 

are those on the border. When moving from 2D to 2D+, the agent is primarily changing the way 

in which they proceed from central cells to border cells. In the 2D to 3D case, however, changes 

to the policy are concentrated at the edge of the grid. The 2D to 3D agent is primarily 

restructuring how they behave once they reach the high-value border states, rather than 

expanding their strategy for reaching the border states.  

 

5. Validating the Computational Results with Human Intuitions 

 
In a separate online experiment, we began to compare these computational results with 

human intuitions (further information is available in the supplementary materials). Subjects 

were first introduced to the concept of ‘Flatland’ and were asked to “imagine that they are a 

circle” in this 2D world. To ensure that subjects understood the context, they were asked to rate 

their understanding of the world and the instructions from 1-4, with 1 being “did not understand 

at all”, and 4 being “I got that completely!”. They were then presented with the two possible 

worlds (3D world vs. the expanded world). Using a slider in which they could move a disc 

between “World 1” (the 3D world) and “World 2” (the expanded world), they were asked to 

compare these two possible worlds along three dimensions: 

1) Imagination.  Subjects were asked: “Now, imagine you’ve lived in the 2D world all your 

life, and have never visited any of the possible worlds. What would be harder to imagine: 

what it’s like to live in World 1, or what it's like to live in World 2?” 
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2) Action. Subjects were asked: “Now imagine that suddenly you discovered that you could 

actually try living in these possible worlds for a day. Which experience would have a 

larger change on how you would act, such as where you would go or what you would do?” 

3) Description. Subjects were asked: “After coming back to the two-dimensional world, you 

now want to tell other people about these possible worlds that you experienced. Which 

world/experience would be more difficult to describe to your friends who have lived in 

the 2D world all their lives?” 

Subjects reported an average rating of 3.72/4 (SD=0.57) in the comprehension questions.  Mean 

subject ratings are depicted in Figure 7.  For all three questions, subjects moved the slider 

reliably more towards the 3D-world (Imagination: t(49)=2.18, p=.034; Action: t(49)=4.00, 

p<.001; Description: t(49)=5.48, p<.001), and there was a main effect of question type (F(1, 

49)=6.74, p=.012). Thus, people’s responses support the intuition that the 3D world is more 

challenging to describe, imagine, and adapt to — suggesting an epistemically transformative 

experience.  

 

Figure 7. Mean subject ratings for each of the question types. The y-axis depicts the question 
type, and the x-axis depicts the slider position (as being rated closer to the 2D+ world vs. the 3D 
world). Error bars reflect 95% confidence intervals. 
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6. General Discussion 

 
The POMDP framework has been useful for explaining many aspects of human thought 

and behavior (e.g., Griffiths et al., 2019; Lieder & Griffiths, 2020; Ongchoco et al., 2024). Here 

we use it to formalize a distinctive shift in an agent’s knowledge based on the kind of new 

experience they have. This is important because, for some new experiences, such as considering 

what an avocado-raspberry milkshake tastes like, knowledge of what this combination tastes like 

can merely be inferred from pre-existing knowledge and experience (of what avocados taste like, 

of what raspberries taste like, and of what milkshakes taste like). In contrast, for other new 

experiences, such as what it would be like for a colorblind individual to see red, knowledge of 

what it’s like requires experience of a new kind. We thus asked whether we could formalize this 

distinction as a signature of an “epistemically transformative” change. 

Our formalization involved the setting up of a “Flatland”-inspired grid world, in which an 

agent initialized in a 2D-world experienced a move either to an expanded 2D+ world or to a 3D-

world.  We predicted the former would reflect the first type of merely “expanded” experience 

(akin to tasting an avocado-raspberry milkshake when one already knows what avocados, 

raspberries, and ordinary milkshakes taste like) while the latter would reflect the second, new 

type of experience (akin to a colorblind individual learning what it’s like to see red). When going 

from a 2D to a 3D world, policy computation times in the new environment seemed to reflect the 

agent “learning from scratch”, suggesting that existing knowledge did not support learning in 

the new environment, presumably because the new knowledge could not simply be inferred 

from prior knowledge. This is the signature of an epistemically transformative experience that 

we propose. In contrast, when going from a 2D to an expanded 2D world, policy computation 

times were faster when initialized with previous knowledge, suggesting that existing knowledge 

did facilitate learning in the new environment (even when the state space was larger in the 

expanded 2D world).  
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In what ways might prior knowledge not be helpful for the acquisition of new 

knowledge? One way to understand the differences in learning times is to consider where the 

relearning was happening for the agent in the 3D world. For this, we sought to compare the 

policies of agents pre- and post-experience (e.g., the policy of a 2D agent versus a 3D agent). 

Previous work on comparing POMDP policies has largely focused on comparing the 

performance of the policies, rather than the knowledge encoded in those policies. In the absence 

of an established method, we directly compared the action distributions in corresponding belief 

states. With this method, we first found that the difference between action distributions of an 

agent who has undergone an epistemically transformative change (going from 2D to 3D) was 

significantly greater than the difference between the action-value distributions of an agent who 

did not. We then found that places of learning (where there was the greatest difference in action 

distributions) corresponded to positions in the grid world that the agent visits to pursue its goal 

of identifying objects in the environment. This suggests that this measure of difference depends 

on the structure of the agent’s task and environment: if the agent exists in an environment 

where perceiving the color red does not enable any new strategies or behaviors, then this new 

form of experience would not drastically alter the agent’s policy. 

Future Directions 

A key contribution (and the main challenge) of this work is to blend computational work 

with philosophical theories. The current work presents a very specific approach towards 

understanding epistemically transformative experiences. By formalizing it this way, it becomes 

clearer exactly what is predicted or explained by the framework, but also where the model can be 

improved. As a result, we hope our work will inspire new questions and new research 

formalizing these experiences. We can think of at least three immediate future directions that 

one can explore: (1) the kinds of epistemic changes agents might experience, (2) the ways agents 

might encounter these changes; and (3) the space of possible worlds the agent might consider 

when updating their policies.   
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For example, the case studies we explored here generally involved “upgrades” in 

experience, in which a new kind of knowledge was gained — whether an agent went from a 2D to 

a 3D world, or a colorblind individual gained sight after an operation. But epistemic changes 

could also include cases where knowledge and abilities are lost — such as when an agent goes 

from a 3D to a 2D world, or an individual loses sight. Future work could run similar simulations 

on the reversal of the cases we explore here. And more generally, as we only explored two case 

studies of possible transformative vs. non-transformative experiences in the context of an 

artificially created world, a more thorough follow-up study could apply our framework to a 

graded range of POMDPs (e.g.: adding incrementally more dimensions, more colors, more cells 

to the grid, etc.), and compare our measures of “transformativeness” against human judgments 

for the same range of worlds. It remains an open question how our computational framework 

might capture people’s intuitions across a broader range of experiences. 

Moreover, in the current work, the movement of the agent from one world to another 

was directly manipulated, and so was the initializing of their policies with policies learned from 

their previous environments. In this sense, the agent was effectively dropped into a new world, 

forced to take on any relearning necessary to navigate the new environment. But in everyday 

experiences, transformative experiences are not always sudden. Moreover, in some instances, 

we can prepare more for impending transformative experiences. One might ask: when are 

policies relearned and replaced in anticipation of the experience? To explore this question, a 

computational framework would need to integrate a “meta-model” that decides when it might be 

optimal to relearn and replace the policy. 

 Finally, epistemically transformative learning relates to counterfactuals, as it concerns 

possibilities that an agent has not experienced and cannot imagine well enough to know what 

they are like. The current framework can be extended to represent this idea. For example, one 

could potentially define notions of “imaginability” and “unimaginability” in terms of possible 
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worlds, and incorporate this into the agent’s broader decision process (in line with the previous 

point about “meta-models”) about when and how to update versus replace their existing policy. 

Conclusions 

Ultimately, these differences in the learning patterns of an agent undergoing a change in 

a grid world are useful for thinking about our own epistemic transformations. We mention three 

broad topics here. First, epistemically transformative experiences, as discussed in philosophy, 

lead to major changes in value functions. Our framework may help us better understand and 

distinguish between different types of value change: those in which a core value function is 

replaced, and those in which a core value function is merely expanded. The types of 

transformative experiences that are of most interest often involve ones where core value 

functions are replaced. (For example, as Paul (2014 argues), when a mother gives birth to a 

child, or a colorblind individual experiences red for the first time.) Second, the differences in 

learning patterns observed here (in particular, h0w the discovery of something new may come 

with the need to re-learn one’s policy) may explain, to some degree, variations in how people 

respond to transformative experiences or learn new concepts (e.g., Amsel, 1992; King et al., 

2017).  Moreover, learning and relearning of new concepts may also occur not just on the 

individual level (as in moments of insight or discovery of new knowledge; Smith, 1995; Helie 

and Sun, 2010; Kounios and Beeman, 2016), but also on the social or scientific  level (as in a 

political or scientific revolution; Kuhn, 1970, Paul, 2014). Finally, recent work explores 

questions that our framework could also bear on, for example, when, in response to epistemic 

transformation, one restructures their value function after a religious conversion (e.g., 

Markovic, 2021, Paul, 2021), or gains a new kind of understanding after becoming a parent (e.g., 

Crone, 2021; Molouki et al., 2020). As such, our computational approach provides a new 

experimental framework for exploring the different ways in which transformative experiences 

can change us. 
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Supplementary Materials 

 
Validating the Case Study with Human Intuitions 

Participants. 50 observers from the United States were recruited using Prolific online 

platform.  This sample size was determined before data collection began, was pre-registered, 

and fixed to be identical across the experiments reported here.  All experimental methods and 

procedures were approved by the {INSTUTION NAME REDACTED} Institutional Review 

Board, and all subjects confirmed that they had read and understood a consent form outlining 

their risks, benefits, compensation, and confidentiality, and that they agreed to participate in the 

experiment. 

Stimuli and Procedure.  Subjects were first introduced to the world of “Flatland”, and 

asked to imagine that they are a circle in this 2D-world.  Subjects were given examples of what 

different shapes in this world would look like.  They were then asked to rate their understanding 

of the world and the instructions from 1-4, with 1 being “did not understand at all”, and 4 being 

“I got that completely!”.  Afterwards, they were presented with descriptions of two possible 

worlds: “In World 1, there is a third dimension that you can ‘jump’ onto, such that you can view 

shapes on a plane from above.  And in World 2 (as on the right), there is a larger space of the 

world that you can move into, such that you can view shapes from nearer or further distances.”  

Using a slider in which they could move a disc between “World 1” and “World 2” (with positions 

of the worlds randomly determined across questions and subjects — such that World 1 could 

appear on the left while World 2 could appear on the right side of the slider, or vice versa), they 

were then asked to compare these two possible worlds along three dimensions: 

1) Imagination.  Subjects were asked: “Now, imagine you’ve lived in the 2D world all 

your life, and have never visited any of the possible worlds. What would be harder to 

imagine: what it's like to live in World 1, or what it’s like to live in World 2?” 
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2) Action. Subjects were asked: “Now imagine that suddenly you discovered that you 

could actually try living in these possible worlds for a day. Which experience would 

have a larger change on how you would act, such as where you would go or what you 

would do?” 

3) Description. Subjects were asked: “After coming back to the two-dimensional world, 

you now want to tell other people about these possible worlds that you experienced. 

Which world/experience would be more difficult to describe to your friends who have 

lived in the 2D world all their lives?” 

Results. Subjects reported an average rating of 3.72/4 (SD=0.57) in the comprehension 

questions.  Mean subject ratings are depicted in the figure below.  For all three questions, 

subjects moved the slider reliably more towards the 3D-world (Imagination: t(49)=2.18, 

p=.034; Action: t(49)=4.00, p<.001; Description: t(49)=5.48, p<.001), and there was a main 

effect of question type (F(1, 49)=6.74, p=.012). 

 

Basic POMDP Implementation Details 

To implement the experiment design formally, we constructed a world in which there 

were one of four possible objects: a 2x4 rectangle, a 2x2 square, a 4x2 rectangle, or a 3x2 

rectangle.  Each state encodes the agent’s position in space as well as the direction that they are 
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looking at, which of the four objects is in the scene, and its position in the 10x10 grid world.  

Finally, we include a terminal state that represents that the simulation has been terminated.  

Thus, our task state space consisted of 4000 states (100 possible positions x 2 dimensions x 5 

possible orientations x 4 possible objects), and a terminal state. 

In a 2D world, the agent could perform a movement action (move north, south, east, or 

west), or a rotation action (look north, south, east, or west).  In a 3D world, the agent could also 

‘jump’ to the other dimension, and ‘look down’ — but these actions were disabled for the 2D 

agent (such that performing these actions incurred a cost of –1000, and did not bring the 2D 

agent into a different state in the state space).  The agent could also perform judgment actions 

(each consisting of a guess about which of the four objects is in the grid-world).  If an agent 

correctly guessed the object, then it received an observation of “correct”, and if not, then it 

received an observation of “wrong”.  Thus, there were a total of 14 actions in our action space.  

At any given point as the agent is moving or rotating in its world, it can see only within a 

particular range of cells, depending on its location and orientation.  We formalized what the 

agent can see at any given moment as a string of 5 digits (e.g., 00000), with each digit 

representing a line segment drawn from the agent’s position to one of five cells in the direction it 

is facing.  If any of these five line segments intersected with an object, the corresponding digit of 

the 5-digit string was then changed to 1.  So if two line segments intersected with an object, the 

5-digit string might look something like 00011.  If an agent tried to move past the borders of the 

grid (e.g., if it moves left even though it is already in the leftmost column of the space), or if it 

faced these borders (e.g., if it faces west even though it is in the leftmost column of the space), it 

received a blank observation (00000).  The agent had perfect vision — which means the agent 

always received the right observation 100% of the time.   

Each movement and rotation action incurred a subjective cost of –0.10.  Correct guesses 

yielded a reward of 2000, while incorrect guesses yielded a reward of –1000.  The model used a 

discount parameter of 0.95. 
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Agent in the 2D world. To verify that our set-up yields to different agent policies, 

depending on what object exists in the world, we then computed the policies of the agent when 

there was a 2x4 rectangle, a 2x2 square, a 4x2 rectangle, or a 3x2 rectangle.  The agent was 

initialized at the upper right corner of the grid world.  When there is a 2x4 rectangle in the 

world, the agent first ‘looks east’, then ‘moves south’ four times, then ‘moves east’ two times, and 

then provides an answer.  When there is a 2x2 rectangle in the world, the agent first ‘looks east’, 

then ‘moves east’ twice, and then provides an answer.  When there is a 4x2 rectangle in the 

world, the agent first ‘looks east’, then ‘moves east’ twice, and then provides an answer.  When 

there is a 3x2 rectangle in the world, the agent first ‘looks south’, then ‘moves south’ four times, 

then ‘moves east’ two times, and then provides an answer.   

Agent in the 3D world.  The set-up is exactly as noted in the 2D world, except now, the 

action of ‘jumping’ brought the agent to the 3rd dimension (i.e., a different state in the state 

space), and looking down allowed the agent to see a wider ‘bird’s-eye’ view of the dimension 

below — formalized as a string of 60 digits. 

Agent in the expanded grid world.  The set-up is exactly as noted in the 2D world, except 

now, the state space comprises of a 12x12 grid world, rather than a 10x10 grid world.  The task 

state space consisted of 5760 states (144 possible positions x 2 dimensions x 5 possible 

orientations x 4 possible objects), and a terminal state. 

Feeding Previously Computed Solutions to the POMDP 

Any policy computed from a POMDP is captured as a list of alpha-vectors, each 

associated with an action.  These alpha-vectors encode information about how useful each 

action is under different beliefs.  The algorithm that we used (i.e., the SARSOP algorithm; 

Kurniawarti et al., 2008) modifies the policy over multiple iterations by adding or pruning 

alpha-vectors from the list, until the changes are small enough that it reaches a precision level of 

0.001.  Thus, the number of iterations needed to compute the policy (and the corresponding 
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amount of time that this takes) gives us a measure of how difficult it was to compute a final list 

of alpha-vectors.   

Within the SARSOP algorithm, we introduced several modifications.  First, we set-up a 

switch in which the SARSOP algorithm could use either the default lower bound (which 

determines the initial list of alpha-vectors it starts with), or a custom lower bound — which 

would be defined by the pre-computed solution that we feed to the solver.  Second, we set-up 

two custom parameters when feeding the solver with a pre-computed solution: (1) a “vector-cap” 

parameter, and (2) a “shuffle” parameter.  When the “vector-cap” parameter is called, a random 

N proportion of alpha-vectors is preserved (e.g., 25%, or 100%) and fed straight to the solver.  

When the “shuffle” parameter is called, the remaining alpha-vectors from (1) that were not 

preserved are then shuffled in two ways.  First, values within each alpha-vector are shuffled.  

Second, values in each alpha-vector are shuffled across the alpha-vectors (essentially re-

assigning values to a different alpha-vector — so that the association between alpha-vectors and 

actions is effectively scrambled).  When the lengths of the alpha-vectors differ (as a result of 

differing sizes of state spaces), values are randomly selected from the full list of values from the 

alpha-vectors shuffled above, and used to then fill in the remaining values of the alpha-vectors. 

 

 

 

 

 


