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Abstract

Inferences about other people’s knowledge and beliefs are central to social interaction.

However, it is often not possible to tell what exactly other people know, because their

behavior is consistent with a range of potential epistemic states. Nonetheless, in many of

these situations we often have coarse intuitions about how much someone knows, despite

being unable to pinpoint the exact content of their knowledge. Here we sought to explore

this capacity in humans, by comparing their performance to a normative model capturing

this kind of broad epistemic-state inference, centered on the expectation that agents

maximize epistemic utilities. We evaluate our model in a graded inference task where

people had to infer how much an agent knew based on the actions they chose (Experiment

1), and joint inferences about how much someone knew and how much they believed they

could learn (Experiment 2). Critically, the agent’s knowledge was always under-determined

by their behavior, but the behavior nonetheless contained information about how much

knowledge they possessed or believed they could gain. Our model captures nuanced

patterns in participant judgments, revealing that people have a quantitative capacity to

infer amorphous knowledge from minimal behavioral evidence.

Keywords: Computational Modeling Social Cognition Theory of Mind
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People can infer the magnitude of other people’s knowledge even when they

cannot infer its contents.

Introduction1

Imagine going to your friend’s house for dinner and, as you’re cooking together,2

realizing that you’ll need more flour. As the two of you head out, you notice that your3

friend immediately starts walking in the direction of a large supermarket, rather than her4

usual go-to bodega around the corner. From this simple decision you might quickly suspect5

that she knows something you don’t. Perhaps the bodega doesn’t carry flour; maybe it’s6

cash only and your friend intends to use her credit card; or the supermarket might be the7

only place that’s open late. Inferences like these not only enable us to make sense of others’8

behavior, but also help us decide when to share what we know, and from whom to learn9

what we don’t, forming a cornerstone of complex social action.10

The ability to interpret other people’s behavior in terms of mental states, called11

Theory of Mind, has its origins in early childhood. From infancy, we interpret other12

people’s behavior as goal-directed (Woodward, 1998) and infer others’ goals and13

preferences by assuming that agents act to maximize utilities—the difference between the14

costs they incur and the rewards they obtain (Csibra, 2003; Jara-Ettinger et al., 2016; Liu15

et al., 2017). Throughout our life, this expectation enables us to make a variety of16

judgments, such as inferring what others like (Lucas et al., 2014; Jern et al., 2017),17

predicting how they might behave (Jara-Ettinger et al., 2020), and determining their social18

affiliations (Jern & Kemp, 2014; Ullman et al., 2009; Davis et al., 2023).19

As the example above shows, however, inferences about others’ minds are not20

restricted to goals and preferences: they also include judgments about what others may or21

may not know. Consistent with this, research in computational social cognition has found22

that people can make quantitative inferences about the contents of others’ beliefs based on23

their behavior (Baker et al., 2017). This work showed that a computational model of joint24

belief-desire attribution, embedded in a Bayesian framework for action understanding,25
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captures how people determine what an agent likely believes about their environment given26

their behavior (e.g., if an agent looking for lunch walks towards the end of the block, peeks27

around the corner to see a Mexican food truck, and then turns around, we can infer that28

the agent was hoping to see a different food truck there).29

While this work shows that people can make quantitative targeted belief inferences,30

such as determining whether an agent knew the type of food a vendor might be selling31

based on their behavior, these inferences often require access to a relatively constrained32

hypothesis space and key actions that reveal the agent’s beliefs. In many everyday33

situations, however, there may be a wide range of different belief states compatible with34

the behavior we observe, making it difficult or impossible to infer the specific contents of35

someone’s beliefs. In cases like these, our representations of other people’s epistemic states36

appear to consist of amorphous estimates of how much others know, without being sure37

exactly what it is that they know. Returning to the example in the introduction, when38

your friend chose to go to the supermarket, it is easy to infer that she knows more than39

you do, even though we might not know exactly what she knows. In cases like these, where40

the exact contents of an agent’s beliefs are underdetermined by their behavior, can people41

make inferences about how much an agent knows in a precise and quantitative manner (to42

the degree revealed in the data)? Or are these inferences coarse and qualitative, providing43

no more than unreliable hints about others’ knowledge?44

Research investigating people’s ability to quantify others’ knowledge—i.e.,45

inferences about how much people know without knowing the exact epistemic content—has46

generally focused on children. By early in preschool children can represent how much47

others know about a domain, without needing to list the full contents of their knowledge48

(Landrum & Mills, 2015; Lutz & Keil, 2002). However, to our knowledge, no work has49

explored our capacity to infer knowledge magnitude from others’ actions, or specified the50

computations that might underlie such inferences.51

Here we propose that such inferences are part of our broader quantitative inferential52
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system within Theory of Mind, and therefore supported by an expectation that agents53

maximize utilities. Specifically, given the expectation that agents choose actions which54

(they believe) fulfill their goals as efficiently as possible, an agent’s choice of action can55

reveal what that agent believes to be efficient, which can, in turn, provide indirect evidence56

about how much knowledge they possess. Thus, we propose that adults can infer how57

much an agent knows based on the subjective costs that they appear to act under (and we58

explain this in detail in our computational framework). In the example above, for instance,59

the fact that your friend bypassed a potential low-cost option (going to the bodega), and60

chose to immediately incur a seemingly higher cost (walking to a place that was farther61

away) for the same reward (getting flour), suggests that she possessed privileged62

information—leading her to conclude that the large supermarket was a better option than63

you’d originally assumed.64

In this paper we present a computational model of epistemic quantification through65

an expectation that agents maximize utilities, and we test its performance on tasks where66

participants must infer how much someone knows or thinks they can learn based on their67

behavior. Our work shows that people can seamlessly make graded quantitative estimates68

of how much someone knows or expects to learn, and that these inferences can be69

explained through an expectation that agents maximize utilities (the difference between70

the costs they incur and the rewards they obtain), and an understanding that the costs71

agents incur depend on the knowledge they possess.72

Computational Framework73

Our computational framework builds on a recent family of computational models of74

mental-state inference structured around an expectation that agents act75

rationally—formalized as a generative model of utility maximization, combined with a76

mechanism for inverting this causal model via Bayesian inference (Lucas et al., 2014; Jern77

et al., 2017; Baker et al., 2017; Jara-Ettinger et al., 2020). We extend this framework by78

proposing that adults often expect agents’ costs to be mediated by their knowledge—and79



INFERRING AMORPHOUS KNOWLEDGE 6

can thus infer others’ epistemic states from observing the apparent costs they choose to80

incur.81

For simplicity, we will explain our framework within the context of our Experiment82

1 paradigm. In these scenarios, an agent must choose one of two different fields for an83

Easter egg hunt. Each field contains a different spatial and numerical configuration of eggs84

(see Fig 1), and exactly one egg in each field contains a prize, while all other eggs are85

empty. Suppose that the agent arrived while the fields were being set up, and was able to86

see the contents of some of the eggs in each field (either empty or full). Let k1 denote the87

subset of eggs in field 1 that the agent observed, and similarly for k2.88

Given this knowledge, the agent can compute the expected cost of finding the prize89

in each field, which we assume is equal to the expected distance traveled before finding the90

prize, plus a small fixed cost C of opening each egg to check its contents. If the agent’s91

knowledge for a field includes the egg ei that contains the prize, then the cost of finding the92

prize in that field is simply the distance dist(e0, ei) from the entrance e0 to the target egg93

ei, plus the cost C of opening the egg. Now suppose that the agent’s knowledge specifies94

that eggs k = {e1, . . . , ek} are empty, and that the prize must be in one of the remaining95

eggs kc = {ek+1, . . . , en}. Let π be a path that starts at the entrance and passes through96

each egg in kc, and let πi denote the ith stop of π, so that π0 is the entrance to the field,97

and πi is the ith egg on the path. The cost of traversing the entire path, stopping to check98

each egg, is99

cost(π) =
|kc|∑
i=1

dist(πi, πi+1) + C (1)

where dist(a, b) is the distance from point a to point b. Most of the time, however, the100

agent will not have to traverse the full path, as they can stop once they find the egg101

containing the prize. Assuming that each egg has equal probability of containing the prize,102

such that P (prize in egg i) = 1/|kc| for all i, then the expected cost of finding the prize103

along path π is equal to104
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E[cost(π)] =
|kc|∑
i=1

1
|kc|

∗ cost(π|i) (2)

Here, π|i is the sub-path obtained by following π until the ith egg, then stopping. Thus, the105

expected cost of finding the prize along path π is equal to the sum of the costs of traversing106

each sub-path π|i, weighted by the probability that the prize is in the ith egg along path π.107

Given that people expect each other to act rationally and efficiently, we assume that108

the agent will compute the search path that minimizes the expected cost of finding the109

prize in field X, which we refer to as E[cost(X)|k]. If the reward of getting the prize is110

equal to R, then the total expected utility of an agent with knowledge state k choosing111

field X is equal to UX = R − E[cost(X)|k].112

Now suppose that the agent computes the expected utility for each field, U1 and U2.113

We assume that agents will generally try to maximize their expected utilities, but are not114

deterministic and may be prone to errors (e.g.: due to distraction or errors while115

computing expected costs). Thus, rather than assuming the agent will always choose the116

field with higher expected utility, we make a standard assumption that the agent will117

choose a field with probability118

P (choice = fieldi|k) ∝ eUi/τ (3)

This is the standard softMax function, which takes a vector of real numbers (in this case,119

the expected utilities) and converts it into a probability vector. The “temperature”120

parameter τ controls the agent’s level of rationality: a very high value of τ entails nearly121

uniform behavior (i.e.: choosing each option with equal probability), while very low values122

entail nearly deterministic behavior (i.e.: choosing the highest utility option with123

probability near 1). Thus, equation 3 specifies the probability that an agent with124

knowledge states k1, k2 (about fields 1 and 2, respectively) will choose to enter each field.125

Given this generative model of the agent’s behavior, a Bayesian observer can infer126
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the agent’s knowledge of each field k1, k2 based on the field configurations and the agents127

choice according to Bayes’ rule:128

P (k1, k2|choice, field1, field2) ∝ P (choice|k1, k2, field1, field2)P (k1, k2) (4)

Here, P (k1, k2|choice, field1, field2) is the posterior probability of the agent’s knowledge129

states, P (choice|k1, k2, field1, field2) is the likelihood of the agent’s choice given these130

knowledge states (given by equation 3), and P (k1, k2) is the prior probability of the agent131

having these knowledge states.132

In our scenarios, however, the richness of the agent’s possible knowledge states (all133

possible subsets of eggs in each field) and the coarseness of the agent’s behavior (a binary134

choice between two fields) make the exact contents of the agent’s knowledge highly135

underdetermined by the observed behavior. That is, there will always be a large number of136

possible knowledge states compatible with the agent’s choice. But even when we can’t infer137

the precise contents of others’ knowledge representations, we may still be able to infer138

approximately how much they know (getting a rough sense of how knowledgeable they139

are). Thus, given a posterior distribution over what the agent might know (equation 4), we140

formalize the quantity of amorphous knowledge Q as the expected quantity of knowledge141

encoded in the probable epistemic states that the agent has, given by Equation (5) below.142

Q =
∑
k∈K

|k|p(k|choice) (5)

where K is the set of all possible epistemic states, |k| is a quantification of how much the143

agent knows in that state, and p(k|choice) is the posterior probability of that knowledge144

state (Eq. 4). Naturally, precisely defining the measure |k| may be highly context-sensitive.145

Here we focus on its application in a particular experimental context but return to the idea146

of how this might generalize in the discussion.147

We evaluate this framework in two experimental paradigms. The first paradigm148
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tests people’s capacity to infer how much someone knows about two related environments149

based on which one they choose to seek a reward in. The second paradigm tests people’s150

capacity to jointly infer how much someone knows and how much they expect to learn151

based on whether they seek additional information before trying to attain a reward.152

Additional details about the inference procedure can be found in each experiment.153

Experiment 1154

To test our model, we designed a task where an agent’s behavior (and its costs)155

could reveal approximately how much they knew—but was too impoverished to reveal156

precisely what they knew. Specifically, participants watched an agent choose which of two157

fields to search for a prize hidden in an easter egg, knowing that each field had only one158

egg with a prize inside (and that the reward was always the same in every field).159

The cost of locating the prize in any given field was determined by the number of160

eggs, their spatial distribution, and the true location of the prize. By manipulating all161

three variables, we test if participants infer how much others know by quantifying and162

comparing their expected costs—or whether participants rely on a simpler heuristic that163

does not require them to track or reason about others’ costs when inferring epistemic164

states. Our procedure, stimuli, sample size, and analysis plan for our main model were165

preregistered (see OSF project page).166

Model Parameters167

Our main model has four parameters: the reward of obtaining the prize, the cost of168

checking an egg’s contents upon reaching it, a prior over the agent’s knowledge, and the169

softmax parameter (τ). All parameter values and model predictions were preregistered170

prior to data collection.171

The reward function for the prize is the same across fields, and we set it as a172

constant R(ai) = 100. Because the reward is constant across action plans, the difference in173

utilities between the two plans would be unchanged by different reward functions. We174

simply selected (and preregistered) a reward function large enough to ensure that no action175
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plan could have a negative utility.176

For each knowledge state sample, the cost of stopping to check an egg’s contents177

was modeled as a continuous uniform distribution [1, 3]. This range was chosen to capture178

the expectation that stopping to open an egg does incur some cost, but that this cost is179

relatively minimal but its precise value unknown.180

We specified a prior over the agent’s knowledge: the agent had a 50% chance of181

knowing each egg’s contents. We also explicitly communicated this to participants in our182

task (see Procedure) to ensure that participants and the model both relied on similar183

epistemic priors. Finally, we selected a softmax τ value that produced graded action184

predictions in proportion to each plan’s expected utility (τ = 3).185

We implemented our inference procedure via Monte Carlo sampling, drawing 10,000186

knowledge states from each field. We then compute equation 5, by quantifying amount of187

knowledge in an epistemic state as 1 − the proportion of eggs the agent is still uncertain188

about (if the agent knows where the prize is, they know the rest of the eggs are empty, and189

thus the proportion known is 1; if the agent is unsure about half of the eggs, the proportion190

known is .5; and so on).191

Alternate Model192

Our main model assumes that people quantify the cost of obtaining the prize in193

each field under different degrees of knowledge, and then reason about the knowledge states194

under which the agent’s actions would have been utility-maximizing. However, it is195

possible that adults generally do not apply such complex computations when inferring196

others’ knowledge states, and instead rely on simpler rules or heuristics. Such heuristics197

could get things right most of the time, while requiring less effort to apply.198

To address this possibility, our alternate model encoded the simple heuristic that199

agents tend to choose options they know more pieces of information about. Critically, this200

alternate model did not consider agents’ knowledge states in a full mentalistic way: it did201

not compute the utility of each field based on the agent’s knowledge state, and did not202
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expect agents to navigate directly to an egg if they knew it contained the prize. It simply203

considered the proportion of eggs with known contents in each field, and expected the204

agent to always choose the field where this proportion was larger (or choose randomly205

when this proportion was equal across fields). We then generate predictions from this206

alternate model using the same sampling procedure as in the main model.207

Our alternate model was not preregistered, but uses only one parameter: the same208

knowledge prior as in our main model. Because our alternate model encodes an209

expectation that agents will always choose fields they know more pieces of information210

about, we do not compute the utility of each field, and thus we do not need to specify211

agents’ costs, rewards, or a softmax parameter.212

Participants213

40 adult participants with U.S.-based IP addresses were recruited via Amazon214

Mechanical Turk (M = 35.05 years, SD = 9.23). 7 additional participants were recruited215

but excluded from the study for failing a preregistered inclusion trial.216

Stimuli217

Stimuli consisted of 19 test trials, plus one inclusion trial. The test trials were218

presented in a randomized order, and the inclusion trial was always presented last. Each219

trial showed an agent, and two fields. The fields each had easter eggs placed inside, and220

one egg in each field contained a hidden prize. This egg was circled for participants. An221

arrow indicated the agent’s path to their chosen field, thus showing which field the agent222

chose to visit on each trial (see Figure 1).223

Stimuli were based on three scenarios (pairs of fields) we thought could elicit a224

range of model ratings. To manipulate the cost of searching each field, eggs in the first field225

(field A) were always wide-spread. The second field (field B) contained the same number of226

eggs, but these eggs were instead clustered near the middle of the field. The first scenario is227

shown in Figure 1a. The second scenario was based on the first: we selected a subset of 6228

eggs from each field, thus varying the number of eggs but not their position. The third229
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scenario was in turn based on the second, but here we instead varied the position of the230

eggs in field A (capturing a case where most of the eggs in field A were extremely costly;231

see Figure 1b).232

To select the final locations of the prize in field A, we provided each scenario as233

input to the model, but systematically varied which egg in field A contained the prize,234

yielding 42 trials (21 unique scenarios x 2 choices per scenario).1 We selected 24 trials (12235

unique scenarios x 2 choices per scenario) that both produced a range of model responses,236

and were not too similar to each other. In preparation to present stimuli to participants,237

some trials were mirrored, and we slightly varied the position of the prize in field B238

amongst similar scenarios (to prevent participants from noticing similarities between239

trials).2 We then obtained final model predictions, and excluded any trials where the240

model’s knowledge predictions were based on less than 500 samples (that is, where the241

predicted choice of field was consistent with the observed choice in less than 5% of cases).242

This yielded 19 final trials; this criterion and our final set of stimuli was preregistered.243

Procedure244

Participants were introduced to an agent going on easter-egg hunts in a245

two-dimensional grid-world. Participants learned that a farmer had placed easter eggs in246

his fields, hiding a prize inside one egg in every field. This prize (one silver token) was247

always the same in every field, and the prize egg was always circled for participants.248

Participants learned that because the grass in the fields was quite short, the agent249

could always see where the eggs were located in a field before entering it. But while the250

1 We did not expect the location of the prize in field B to strongly affect the model’s predictions; to test if
this was the case, we did also replicate one scenario given a different prize location in field B, yielding an
additional 18 additional trials. The location of the prize in field B indeed had little effect (as all of these
eggs are so close to each other), and thus we selected our final stimuli by considering primarily the location
of the prize in field A.
2 Despite slightly varying the prize’s location in field B across similar trials in our preregistered stimuli, our
model predictions were accidentally not updated accordingly prior to preregistration. Because we collected
our data using the preregistered stimuli, we obtained new model predictions for any trials where the
location of the prize in the stimuli did not match the coordinates originally used in the preregistered model
predictions. No aspect of the model itself was modified and we used the same preregistered parameters.
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Field A Field B
a)

b)
Field A Field B

Figure 1
Example of the experimental stimuli. The arrow indicates the agent’s chosen field; eggs
containing a prize are circled. Panel A depicts a strong epistemic contrast: here, you might
infer that the agent knows approximately where the prize is located in their chosen field, and
very little about the other field. Panel B depicts a more graded contrast: here, you might
suspect that the agent knows more about the prize’s location in their chosen field, but may
be less certain they know a lot (because their chosen field is also much less costly to search).

prize egg was circled for participants, the agent didn’t necessarily know which egg contained251

the prize. Participants learned that the agent had seen the farmer set up some of the eggs;252

it was unclear what prior over knowledge participants would bring to the task, so we253

specified that the agent had a 50/50 chance of knowing the contents of any given egg, and254

that these probabilities were independent (i.e.: knowing the contents of one egg does not255

affect the probability of knowing the contents of any other egg). Additionally, participants256

were explicitly instructed that the agent did not always know the same amount about257

every field; the amount she knew about the location of the prize in each field could differ.258

Participants learned that the agent always had to choose between two fields, and259

could only search the field she chose. An arrow indicated which field the agent had chosen260

to search (see Figure 1). Participants were oriented to factors that might affect the agent’s261

search decision: they were told that the agent always wanted to find the prize as quickly262
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and easily as possible, and that the difficulty of finding the prize was determined by the263

number of eggs in a field, their distance from the entrance, and the amount the agent264

already knew about the location of the prize. Note that while this tutorial ensured265

participants were attentive to the main features of our task, we are interested in how266

participants combine these different pieces of information and reason over them to infer267

what others know. The tutorial did not specify how participants should weight or use any268

of these features in their judgments.269

To access the task, participants then completed a preregistered inclusion quiz that270

assessed their understanding of the task instructions. Participants were given two chances271

to pass the inclusion quiz; those who failed on their first attempt were required to review272

the task introduction before trying again. Participants who failed both attempts were not273

given access to the task. Upon passing the inclusion quiz, participants then completed the274

19 test trials (presented in a randomized order), plus one inclusion trial at the end. For275

each trial, participants were asked to rate, on a sliding scale from 0 - 100, how much the276

agent knew about the location of the prize in each field. Critically, participants rated how277

much the agent knew about both fields, not just the field she had chosen. The278

preregistered inclusion trial always came last. It was similar to the test trials, but279

presented an extreme contrast where we could make a strong prediction about the pattern280

of judgments an attentive participant should make. Participants whose judgments differed281

from our preregistered criteria were excluded. Finally, participants were asked what they282

thought the point of the task had been, and were given an opportunity to provide feedback283

or note any technical difficulties.284

Results285

Participants rated the agent’s knowledge about both fields in 19 test trials, yielding286

38 ratings. As preregistered, participant responses were averaged by question, and then287

z-scored; the corresponding model predictions were also z-scored.288

Figure 2 shows the overall results, revealing that our model was highly correlated289
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Figure 2
Comparison between our model and the alternate model, with linear regressions fit to each
dataset. Each point represents one knowledge rating, with model predictions on the x axis
and participant judgments on the y axis. Gray bands show 95% confidence intervals in the
regression.

with participant judgments, r = 0.94 (95% CI: 91.8, 98.8). Critically, this correlation did290

not only reflect extreme cases where both the model and participants inferred a lot of291

knowledge or very little knowledge: it also included cases where both the model and292

participants were equally uncertain, in a graded manner, about how much the agent knew.293

Figure 3 plots the trial-by-trial correspondence between model and participant ratings,294

showing that participants’ judgments were not bi-modal, but rather graded in a way that295

closely tracked our model’s predictions.296

To ensure that these results could not be the product of a simple heuristic, we297

implemented an alternate model. Rather than performing full mental-state inference, our298

alternate model simply assumed that agents always choose fields where they know about a299

greater proportion of eggs. Note that we only preregistered an analysis plan for our main300

model, but test the performance of the alternate model in the same way. The alternate301
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model showed a weaker correlation with participant judgments, r = 0.84 (95% CI:302

78.5, 89.5), demonstrating that the amount of locations an agent knows about in each field303

does matter, but that predictions made on the basis of this one factor (without considering304

costs) do not capture the graded structure of participant judgments. A bootstrap over the305

correlation difference revealed that the main model was reliably better correlated with306

participants judgments than the alternate model (correlation difference, alternate model −307

main model = −0.11, 95% CI: −17.4a, −4.3; not preregistered). As Figure 2 reveals,308

although the correlation between the alternate model and participant judgments was still309

high, this is only because the alternate model categorized every judgment into two rough310

bins. These predictions were approximately correct, but lack the nuance that participants’311

epistemic inferences showed, and that our model was able to capture.312

Experiment 2313

Experiment 1 shows that adults are able to make precise epistemic inferences even314

in underdetermined scenarios––and that these inferences are well-captured by our main315

model. Experiment 2 both conceptually replicates and extends these findings. Specifically,316

in Experiment 2 we test whether our framework can capture not just adults’ inferences317

about how much someone knows, but also about how much they believed they could learn.318

To do so, we designed a task where an agent’s information-seeking choice (and its cost)319

could reveal approximately how much they knew and believed they could learn (but again,320

could not reveal these states with any precision). Specifically, participants watched agents321

search islands for hidden treasure (Figure 4). Agents had the option to obtain a treasure322

map first, or to skip the map and go straight to the island. Importantly, the map was not323

always informative: sometimes it might contain a lot of information about the treasure’s324

location, sometimes it might contain a little, and sometimes it might contain no325

information at all. To elicit graded inferences, we manipulated the distance of the map326

(varying information’s cost), the size of the island (varying the potential difficulty of327

finding the treasure), and agents’ information-seeking choices (varying whether or not they328
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Figure 3
Detailed results for Experiment 1. Each panel presents one trial, with results split by the
field rated (Field A or Field B, indicated on the x axis). The y axis indicates standardized
knowledge ratings. Participant judgments are plotted in blue; model predictions are plotted
in red. Vertical bars show 95% confidence intervals over participant judgments. The
schematics show the position and number of eggs in each field, the egg with the prize, and
the field the agent ultimately chose in each trial.

pursued the map). Our procedure and sample size were pre-registered.329

Model Structure and Parameters330

The computational model followed the same conceptual structure as Experiment 1.331

The key difference was that the two competing utilities no longer referred to two possible332

search areas. Instead, the first utility represented going directly to the island to search for333

the treasure (same logic as searching a field in Experiment 1). The second utility334

represented obtaining the map first. Thus, this second utility integrated the additional335

deterministic cost of obtaining the map and going to the island, and then computed the336

revised search cost after obtaining the map. Using Bayesian inference, we then applied337

joint inference to recover the agents’ (1) amount of knowledge about the island and (2)338
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amount of information expected to be contained in the map.339

Our main model for Experiment 2 has six parameters: the reward of obtaining the340

prize (set to a constant R(ai) = 100), the cost of sailing across one grid square, the cost of341

searching one island square, the softmax parameter (τ), and two priors: one over how much342

agents know in general, and one over how much information maps generally hold.343

We pre-registered the first four parameters prior to data collection, basing the344

relative cost of sailing vs. searching upon empirical estimates from a pilot sample. Our345

pilot sample judged that searching one island square was, on average, 2.25x more difficult346

than sailing across one ocean square, and thus we pre-registered a sailing cost of 1, a347

searching cost of 2.25, and τ = 4 (based upon the range of utilities these costs produced).348

However, we explicitly pre-registered that we would re-estimate these based on our final349

sample, and re-adjust our softmax parameter if needed. In our final sample, most350

participants judged that searching was more difficult than sailing, judging that it was on351

average 3.9x harder. Thus to generate our final predictions, we set the cost of searching to352

3.9. Because this affected the range of possible utilities, as preregistered we adjusted our353

softmax parameter, setting τ = 6.5.3354

We also defined a uniform prior over the probability that the map might contain355

each degree of knowledge, and defined a non-uniform prior over the probability that the356

pirates might have each degree of knowledge (not preregistered). This was intended to357

capture the possibility that adults might generally expect agents to be knowledgeable (and358

unlike in Experiment 1, we did not specify precisely how likely agents were to know the359

contents of each island square). We defined this prior using the binomial distribution (p =360

0.8).361

3 Note that Experiment 2 was conducted before Experiment 1. The pre-registered procedure for
Experiment 1 was simpler due to the realization that the tau parameter did not particularly matter for our
predictions.



INFERRING AMORPHOUS KNOWLEDGE 19

Alternate Model362

Our preregistered alternate model is a linear regression, trained on participants’363

z-scored average ratings in our task. It predicts knowledge based on an interaction between364

agents’ information-seeking choice (to retrieve the map / skip the map), and the type of365

knowledge (what agents know / what information they believe the map contains). The366

formula for this regression in R is: lm(mean participant rating ∼ choice*knowledge367

category).368

Participants369

40 adult participants with U.S.-based IP addresses were recruited via Amazon370

Mechanical Turk (M = 38.73 years, SD = 12.23). 9 additional participants were recruited371

but excluded from the study for failing a preregistered inclusion trial.372

Stimuli373

Stimuli consisted of 18 test trials, plus two inclusion trials. The test trials were374

presented in a randomized order, and the inclusion trials were always presented last. Each375

trial showed a pirate ship (represented by a yellow star), a treasure map (represented by a376

green square), and an island (represented by brown squares); see Figure 4. Each island had377

a beach (represented by a lighter brown square), which was the only point on the island378

pirates could land their ship. An arrow indicated agents’ path, showing whether they chose379

to pursue added knowledge (obtaining the treasure map first), or whether they chose to380

search the island without obtaining the map (see Figure 4a).381

To construct our stimuli space, we varied the size of the island pirates needed to382

search (12, 24, or 36 grid-squares), the detour required to obtain the treasure map (adding383

approximately 10, 20, or 40 grid-squares to the journey), and agents’ choices to obtain or384

skip the map. This yielded 18 test trials which systematically varied information’s cost (as385

well as agents’ information-seeking choices).386
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Island size:

small medium large

Map cost:

Choice:
skipped mapgot map

medium cost high costlow cost

A) B)

C)

Figure 4
Space of all possible experimental stimuli. We varied A) agents’ choices (to pursue
information or ignore it), B) the size of the island to be searched (small, medium, large),
and C) the cost of pursuing information (small, medium, large). This yielded 18 test trials.
The first choice (panel A, left) depicts a strong epistemic contrast: here, you might infer
the agents knew relatively little, and believed they stood to gain a lot of information
(because they chose to incur a high cost to obtain the map, even though the island was
small and thus relatively easy to search). The second choice (panel A, right) depicts a more
graded contrast: while the agents clearly did not think the map was worth it, it may not be
entirely clear why (did they know a lot, or did they simply believe the island would be easy
to search even given ignorance?)

Procedure387

Participants were introduced to pirates searching for treasure in a two-dimensional388

grid-world. Participants were shown how to identify the pirate ship (marked by a star),389

and learned that pirates could only land on the island at the beach (this was intended to390

explain why the pirates sometimes took circuitous, high-cost paths to the island; e.g., see391

Figure 4a). Participants learned that pirates sometimes knew a lot about the treasure’s392

location, sometimes knew a little, and often knew something in between.393

Participants learned that islands could be all different sizes, and that there was394

always a map somewhere in the ocean, marked by a green square. However, this map was395



INFERRING AMORPHOUS KNOWLEDGE 21

not always helpful: sometimes it contained a lot of information about the location of the396

treasure, sometimes it contained only a little, and often it contained something in between.397

To obtain the map, pirates needed to sail to the green square first, before going to the398

island. An arrow indicated pirates’ final choice (showing their chosen path).399

Participants were oriented to factors that might affect agents’ information-seeking400

decisions: they were told that the less pirates knew, the more work it might take to locate401

the treasure; the bigger the island, the more work it might be to search for treasure; and402

the farther the map, the more time and effort might be required to obtain it. Participants403

were explicitly told that, in each case, the pirates needed to decide whether it was404

worthwhile to pursue the map. As before, note that while this tutorial ensured participants405

were attentive to the main features of our task, we are interested in how participants406

combine these different pieces of information and reason over them to infer what others407

know and believe they can learn. The tutorial did not specify how participants should408

weight or use any of these features in their judgments.409

Before the task, participants completed three simple attention check questions that410

assessed their understanding of the task instructions. Participants were asked to identify411

how the pirate ship was marked (by a star), to recall the pirates’ goal (find treasure), and412

finally were asked to identify both that the map was always on the green square, and that413

pirates could only get on an island via the beach (distinguishing these from three other414

incorrect statements). Participants were able to select as many answers as they chose to415

each question; however, attentive participants should have noticed that the first two416

questions could only have one correct answer. Any participants who selected more than417

one answer in response to these two questions was excluded (preregistered). Participants418

who answered any question incorrectly were corrected.419

Finally, participants were again reminded that both the pirates’ knowledge and the420

informativeness of the map might vary, and that in each case, pirates needed to decide421

whether it was worthwhile to pursue the map. For each trial, after observing pirates’422
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information-seeking choices (and their expected costs), participants were asked to rate, on423

a sliding scale from 0 - 100, how much the pirates knew about the location of the treasure,424

and how much information the pirates thought the map had about the location of the425

treasure.426

Two inclusion trials always came last. These were similar to the test trials, but427

presented an extreme contrast where we could make a strong prediction about the pattern428

of judgments an attentive participant should make. Participants whose judgments differed429

from this pattern were excluded, as preregistered.430

Participants were also asked to judge which was more difficult: to sail across one431

ocean square, or search one island square for treasure. After identifying which was harder,432

participants were asked to judge how much more difficult their chosen option was, in433

relation to the other. This choice was preregistered, with the idea that the cost our model434

assigned to each action (sailing vs. searching) would be scaled based upon participants’435

judgments. Finally, participants were asked what they thought the point of the task had436

been, and were given an opportunity to provide feedback or note any technical difficulties.437

Results438

Participants rated how much the pirates knew, and how much they believed they439

could learn from the map, in 18 test trials. This yielded 36 final ratings. As in Experiment440

1, participant responses were averaged by question, and then z-scored; the corresponding441

model predictions were also z-scored. 4
442

Figure 5 shows the overall results, revealing that our model was highly correlated443

with participant judgments, r = 0.86 (95% CI: 81, 92.9). And this correlation did not444

reflect only cases where both the model and participants inferred a lot of knowledge or very445

little knowledge. Critically, it included cases where both the model and participants were446

equally uncertain, in a graded manner, about how much the agent knew.447

4 We mistakenly preregistered a slightly different z-scoring procedure—z-scoring participant ratings and
then averaging by trial and prediction type. For consistency, we follow the process outlined in Experiment
1.
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A) B)

r = 0.86
95% CI: 80.95 – 92.7 

r = 0.94
95% CI: 91.3 – 97.8 

r = 0.67
p = .049

r = 0.89
p = .001

r = 0.88
p = .002

r = 0.91
p < .001

Figure 5
A) Comparison between our model and the alternate model, with linear regressions fit to
each dataset. Each point represents one knowledge rating, with model predictions on the x
axis and participant judgments on the y axis. Gray bands show 95% confidence intervals in
the regression. B) Correlation between participant judgments and main model, binning
participant judgments according to the alternate model’s predictions. Each point represents
one knowledge rating, with model predictions on the x axis and participant judgments on
the y axis. Gray bands show 95% confidence intervals in the regression. This reveals
meaningful variation our alternate model was not able to capture.

To ensure that these results could not be the product of a simple heuristic, we448

implemented an alternate model. Rather than performing full mental-state inference, our449

alternate model simply assumed that an agent who skipped the map didn’t need450

information, and vice versa. Because this model was insensitive to cost, it did not consider451

more graded cases we expected humans might (e.g., that if the map is right on the way you452

might check even if you’re not sure how much you’ll learn; whereas if the map is far away,453

you may choose not to obtain it even if you lack some knowledge). This alternate model454

showed a stronger correlation with participant judgments, r = 0.94 (95% CI: 91.4, 97.7); a455

bootstrap over the correlation difference revealed that the alternate model was reliably456

better correlated with participants judgments than the main model (correlation difference,457

alternate model − main model = 0.079, 95% CI: 0.9, 14.6; not preregistered).458

Although the alternate model was better correlated with participant judgments459

(perhaps not unexpectedly, as it was trained on participant judgments in the first place), it460
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did not capture any of their gradedness. While it is generally true that in our task, agents461

sought out information when they needed it and skipped it when they did not, both462

participants and our main model were able to make much more nuanced epistemic463

inferences. Thus, following our preregistered analysis plan, we test whether there is464

actually meaningful variation in participant judgments that the alternate model fails to465

capture (despite well-capturing the overall trajectory of participants’ responses).466

Specifically, because the alternate model binned all predictions into four categories,467

we tested whether participant judgments within each of these categories were still468

well-correlated with those of our main model. If this is the case, this would suggest that469

the alternate model fails to account for meaningful variation. In other words, obtaining470

meaningful correlations within each bin suggests that there is still structure in each471

category that only our main model is able to capture. Consistent with this possibility, even472

when separating participant judgments according to the predictions of our alternate model,473

participants’ judgments were significantly correlated with the corresponding judgments474

from our main model (all r ’s between [0.67, 0.91], all p’s < .05; see Figure 5). This475

demonstrates that our alternate model fails to capture meaningful variation in participant476

judgments, despite the high overall correlation between participant judgments and the477

predictions of our alternate model.478

General Discussion479

Here we presented two experiments and a computational model designed to test480

people’s capacity to make amorphous epistemic inferences: quantitative estimates about481

how much someone knows or expects to learn, but without internal representations of the482

contents of this knowledge. We found that people can make quantitative inferences about483

how much someone knows (Experiment 1), and joint inferences about how much someone484

knows and how much they expect to learn (Experiment 2), all from minimal observable485

choices. These inferences were predicted by a normative model that estimates amount of486

knowledge via Bayesian inference, but could not be explained by alternate models that did487
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not consider how knowledge would affect agents’ expected costs (and thus their behavior);488

these alternate models failed to capture the graded structure of participants’ judgments.489

Our computational model followed the same principles that shape related models of490

Theory of Mind, where mental-state inference is structured around an assumption that491

agents act to maximize utilities—the difference between the costs that agents incur and the492

rewards they obtain Jara-Ettinger et al. (2016); Gergely & Csibra (2003); Lucas et al.493

(2014); Jern et al. (2017). Our model builds on these ideas, and extends them by explicitly494

modeling the idea that, by observing the apparent costs agents incur, we can recover the495

amount of knowledge they possess. The quantitative fit between our model and participants496

suggests that the mechanisms supporting inferences about specific epistemic states follow497

the same principles as the mechanisms supporting inferences about broad epistemic states.498

Related work has developed computational models that explain how people infer499

each other’s beliefs about the world (Baker et al., 2017). These inferences, however, depend500

on access to a highly constrained set of epistemic hypotheses, and to observable behavior501

that is diagnostic of the agent’s epistemic state. While these inferences are undoubtedly502

critical for social interaction, many everyday social behaviors lack the information needed503

to make such precise and targeted epistemic inferences. We show that, in such situations,504

people can nonetheless derive quantitative estimates of how much knowledge someone505

might possess (or believe they can come to possess). This capacity might be particularly506

important in informal pedagogy, as it might help us identify agents who are knowledgeable,507

who we could subsequently seek out to learn from. These inferences, given that they508

require fewer observations, might also serve as a powerful attention cue. Imagine, for509

instance, being a competitor in a setting like Experiment 1. Quickly detecting that an510

agent is knowledgeable might prompt us to attend to them carefully as they take511

additional actions, so that we can further uncover what specific knowledge they have.512

Following a large tradition in computational cognitive science, our model was513

designed to explain human behavior at a computational level of analysis (Marr, 1982).514
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Models at the computational level typically remain agnostic about the underlying515

algorithmic implementation in the human mind. In our case, however, we believe there are516

strong reasons to suspect our model is not a plausible candidate for an algorithmic517

implementation. This is because our model makes two critical assumptions: First,518

observers must have access to a range of epistemic hypotheses that they can evaluate;519

second, they must have a way to quantify the amount of knowledge contained within each520

epistemic hypothesis.521

While the first assumption may seem plausible in some situations, there are many522

cases where we cannot represent the internal structure of epistemic hypotheses, or have523

access to the hypothesis space. For instance, while we know that pilots can fly planes, most524

of us do not know how to represent what a pilot knows (unlike in our experiments, where525

we knew how to represent different possible knowledge states the agents might have). This526

suggests that some amorphous inferences cannot be supported by an algorithm that527

requires people to integrate many specific hypotheses about an agent’s knowledge.528

Similarly, the second assumption (that it is possible to quantify the amount of knowledge in529

each hypothesis) was easy to formalize in our experimental contexts. But this is not always530

the case. In the same example about pilots, even when we build specific representations of531

knowledge, such as “the pilot knows how turn the autopilot on and off", it is difficult to532

gauge the amount of knowledge involved without having the knowledge ourselves. For533

instance, if it just a simple button press, little knowledge is needed. But if using autopilot534

requires managing a wide range of other parameters, then a lot of knowledge is needed.535

The fact that our model is an unlikely candidate for an algorithmic implementation536

makes people’s results, in some sense, even more interesting. Somehow, participants in our537

task were able to generate estimates of knowledge that quantitatively resembled our538

normative model. This suggests that people have access to some approximations that539

manage to produce inferences that approximate normative inferences. Thus, our results are540

best thought as establishing that people have a capacity to make quantitative and graded541
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amorphous inferences, and opens questions for future research about how exactly people542

accomplish this.543

Our results also leave an empirical question open: although our focus was on544

amorphous knowledge inferences, we do not know if people also spontaneously attempted545

to make specific epistemic inferences too. Although it is impossible to infer exactly what546

the agent knew, some context might reveal partial information. For instance, in547

Experiment 2, if a ship bypasses the island port and travels far away to collect a map,548

people might think that the pirates were confident that the treasure would not be close to549

the port. This suggests that people’s inferences also be studied as a hierarchical two-tiered550

inference where we use observable action to simultaneously make broad epistemic551

inferences and specific targeted inferences when possible.552

Overall, our work sheds light on a common everyday epistemic inference: the ability553

to infer how much others know or believe they can learn, even when there is insufficient554

information to infer the exact contents of their knowledge. This work highlights a space of555

inferences that have been historically understudied in Theory of Mind, but that might be556

equally important. The capacity to build quick, high-level snapshots of what’s in other557

minds might be one of the most important representations that direct our decisions over558

whom to attend to, seek information from, and trust.559
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