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Abstract
An increasingly prevalent approach to studying human cognition is to construe the
mind as optimally allocating limited cognitive resources among cognitive processes.
Under this bounded rationality approach (Icard in Philos Sci 85(1):79–101, 2018;
Simon in Utility and probability, Palgrave Macmillan, 1980), it is common to assume
that resource-bounded cognitive agents approximate normative solutions to statistical
inference problems, and that much of the bias and variability in human performance
can be explained in terms of the approximation strategies we employ. In this paper, we
argue that this approach restricts itself to an unnecessarily narrow scope of cognitive
models, which limits its ability to explain how humans flexibly adapt their represen-
tations to novel environments. We argue that more attention should be paid to how
we form our cognitive representations in the first place, and advocate for pluralis-
tic framework which jointly optimizes over both representations and algorithms for
manipulating them. We identify several fundamental trade-offs that manifest in this
joint optimization, and draw on recent work to motivate a unified formal framework
for this analysis. We illustrate a simplified version of this analysis with a case study
in social cognition, and outline several new directions for research that this approach
suggests.
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1 Introduction

1.1 Background andmotivation

Muchof our everyday cognitive andperceptual activity involves inference under uncer-
tainty: across many different contexts, we make judgments that are undetermined by
the (often sparse and noisy) data available to us. Are these pants black or dark blue?
Will my friend enjoy this horror movie, or will it make them uncomfortable? Is this
car merging into my lane, or did they leave their blinker on by mistake? In the study
of human cognition, it has become increasingly common to interpret our cognitive
capacities through this lens, an approach known as rational analysis (Anderson, 1990).
Rational analysis is motivated by an assumption that the human mind has adapted to
solve certain kinds of environmentally-grounded decision problemswith limited infor-
mation, and we can gain key insights into human cognition by precisely characterizing
these problems and their optimal solutions.

Rational analysis is traditionally formulated at the computational level of analysis
(Marr, 1982), aiming to capture the formal structure of the inference problemswe solve
(i.e.: the information content of inputs and outputs), and comparing human perfor-
mance against the optimal solutions to those problems. As such, rationalist models are
typically posited as useful descriptions of human behavior, rather than genuine expla-
nations of the neural and cognitive mechanisms underlying that behavior. More recent
work, however, has sought to bridge this explanatory gap, extending the methodology
of rational analysis to the algorithmic level of description. This approach, referred
to as boundedly rational analysis (Icard, 2018) or resource-rational analysis (Lieder
& Griffiths, 2020), explicitly accounts for the limited computational resources (e.g.:
time and memory) with which the mind operates. Rather than modeling cognitive
activity as (approximately) optimal inference under uncertainty, boundedly rational
analysis models cognitive activity as the (approximately) optimal allocation of cogni-
tive resources. Recent work has leveraged this assumption to show how many of the
apparent biases and errors that characterize human reasoning (Tversky & Kahneman,
1974) actually reflect optimal performance under certain assumptions about the cost
of computation (e.g.: Lieder et al., 2012, 2018; Vul et al., 2014).

1.2 Our contribution

In this paper, we argue that certain traditional approaches to boundedly rational cogni-
tive modeling focus on an unnecessarily narrow scope of plausible cognitive models,
and while they may provide a normative justification for why humans would produce
certain patterns of behavior, they fall short of explaining howwe develop these patterns
of behavior. This approach is characterized by first defining a computation-level repre-
sentation of a problem, deriving the optimal solution to that problem for an unbounded
agent, then considering the optimal algorithm through which an agent with finite com-
putational resources should approximate that solution. Underlying this approach are
certain assumptions about how the agent can represent uncertainty and manipulate
those representations: at a computational level, the optimal solution involves exact
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computationover explicit representations of uncertainty (e.g.:Bayesianposterior infer-
ence over a prior probability distribution—Griffiths et al., 2008). At the algorithmic
level, the most common assumption in the literature is that agents leverage sampling-
based algorithms for approximating probabilistic computations (e.g.: Bonawitz et al.,
2014; Denison et al., 2013).

We argue that the focus on approximating optimal solutions, and the particular focus
on sampling-based approximations, is neither immediately demanded nor immediately
justified by the assumptions of boundedly rational analysis. This is due in part to the
fact that approximating a normatively ideal solution is not always the most rational
strategy for an agent with limited computational resources; in fact, there are cases in
which approximation may be less efficient than exact computation. More generally,
we argue that this approach glosses over another relevant dimension of optimization:
the representations themselves. Given that there exist plausible neurophysiological
accounts to support a range possible representations (Buesing et al., 2011; Knill &
Pouget, 2004;Ma et al., 2006;Moreno-Bote et al., 2011), as well as preliminary behav-
ioral evidence suggesting some flexibility in how we represent uncertainty (Houlsby
et al., 2013; Vilares et al., 2012), we advocate for a more pluralistic approach to
bounded rationality which optimizes over representational forms and algorithms for
manipulating those representations.

We present two main arguments to advocate for this approach. Our first argument
is posed at the scale of a single well-defined task: we will demonstrate in Sect. 3
that, even for a fairly restricted space of tasks, there may exist non-trivial interactions
between how we represent uncertainty in key variables, and how we can efficiently
manipulate that representation to solve the task. Thus, by fixing a single representation
and adjusting our algorithm for manipulating it, we are only considering one half of
the full optimization problem. Our second argument is posed at the more general (and
realistic) context in which a bounded agent may encounter many different possible
tasks, with varying degrees of uncertainty about which tasks will appear when. At this
“zoomed out” perspective, it is clear that a bounded agent could not optimize for every
possible task individually: the relevant question, then, is how the agent develops suffi-
ciently flexible strategies and adapts them to novel contexts. As we will investigate in
Sect. 4, this broader perspective makes the need for flexible representations especially
clear, and highlights several fundamental trade-offs that have been under-studied in
much of the literature on bounded rationality.

1.3 Outline

In the next section we provide more detail on the motivation and use of rational
analysis, concerns about the explanatory capacity of rationalist cognitive models, and
how boundedly rational analysis seeks to resolve these concerns. We then review
recent work on boundedly rational cognitive modeling, how the scope of this work
may be overly constrained, and what this implies about the rationalist justification of
such models. Finally, we consider what the scope of our focus ought to be, and the
requirements for an analysis framework that covers the appropriate scope.
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In Sect. 3, we sketch out the requirements for such a framework, and point to
some existing formal tools that are well-suited for the task. In particular, we show
how Probabilistic Programming Languages (PPLs) provide a unified framework for
formalizing both a space of representations, and a space of algorithms formanipulating
those representations, in a way that exposes certain trade-offs relevant for our analysis.
Further,we argue that parameterized complexity theory (Blokpoel et al., 2010;Downey
and Fellows, 2012) provides a useful lens through which to characterize these trade-
offs in a way that supports joint optimization. We then provide a simple case study to
demonstrate that, even with a very restricted set of tasks, this optimization can be quite
non-trivial. As we shall argue, however, a fully formalized framework for this joint
optimization requires attention to certain trade-offs and constraints that go beyond
the scope of traditional approaches. In Sect. 4, we consider the higher-level problem
faced by a bounded agent who must navigate a (potentially unknown) distribution of
(potentially very different) tasks. We highlight three trade-offs that become especially
salient in this context, and draw on recent work tomotivate an optimization framework
that unifies these trade-offs. We then argue that such a framework is better suited for
understanding how people actually develop certain representations and strategies,
which provides more explanatory power than a normative justification for why people
ought to use certain strategies. Finally, we conclude in Sect. 5 with a brief summary
of our findings, before considering future directions for research suggested by this
approach.

2 Background

While not an entirely novel concept (Simon, 1955, 1980), bounded rationality has seen
a recent surge of interest in cognitive science and psychology, largely motivated by
an apparent tension between two different bodies of psychological research. Here we
providemore background on these two approaches to studying themind, how bounded
rationality seeks to resolve the tension between them, and the degree to which earlier
approaches can fulfill this purpose.

2.1 Rational analysis

The study of human cognition faces a persistent identifiability problem. As we cannot
directly observe or intervene on a subject’s cognitive states, we generally have to rely
on (often sparse and noisy) behavioral data to distinguish hypotheses. Furthermore,
the space of hypotheses (i.e.: high-level cognitive models) is largely unbounded in the
absence of any strong theoretical assumptions. Given the sparsity of available data
streams, relative to the vast space of possible hypotheses, there will usually be many
(sometimes infinitely many) competing explanations compatible with the same data
(Pylyshyn, 1980). Rational analysis seeks to address this problem by narrowing our
focus: by modeling normative solutions to the problems being solved by the mind,
we can both reduce the space of possible alternatives to consider, and provide more
quantifiablemetrics for comparing competingmodels (Anderson, 1990). Thus, a ratio-

123



Synthese (2024) 203 :142 Page 5 of 30 142

nal analysis of cognitive behavior proceeds by identifying the problems solved by the
mind, developing normative models of the ideal solutions to those problems, and com-
paring human performance against those ideal solutions. Importantly, this approach is
typically framed at the computational level of analysis (Marr, 1982), aiming to charac-
terize our cognitive behavior in terms of rational inferences while remaining agnostic
about the cognitive or neural mechanisms underlying these inferences.

While there are multiple formalizations of rational analysis, the most prevalent by
far is the Bayesian implementation (Griffiths et al., 2008). Although our arguments are
aimed at rational analysis more generally, grounding these arguments in a particular
implementation will help illustrate them more saliently, and we choose the Bayesian
implementation due to its tremendous presence inmodern cognitive science. Formally,
we represent a cognitive agent’s uncertainty about the world as a prior probability
distribution P(w) over possible world-states. Given some evidence E , a Bayesian
agent (henceforth referred to as the observer) will update the degree to which they
believe in world-state w according to Bayes’ rule:

P(w|E) = P(E |w)P(w)

P(E)
(2.1)

where P(w|E) is the agent’s updated degree of belief inw (i.e.: the posterior probabil-
ity of w), P(E |w) denotes the probability of observing E given that w is the true state
of the world (i.e.: the likelihood of E given w), P(w) is the observer’s prior degree
of belief in w (before observing any evidence), and P(E) is the total probability of
observing evidence E . Faced with the problem of inferring the true hypothesis after
observing evidence E , the most rational strategy1 is to compute Eq. (2.1) for each
possible world state, and return the state w∗ which maximizes the posterior probabil-
ity P(w∗|E) (De Finetti, 1937; Huttegger, 2013). This provides a normatively ideal
solution for inference under uncertainty and has therefore been widely used as a basis
for rational analysis of human cognition.

The main concern when constructing a Bayesian cognitive model is how the
observer represents the probability distributions in Eq. 2.1. The most common
approach is to assume some internal mental model which specifies a set of variables
(both observable and latent), and a set of probabilistic causal relations between these
variables (i.e.: a generative model—Gerstenberg et al., 2021; Icard, 2016). To make
this more concrete, we introduce a simple demonstration of such a model, which we
will refer to throughout the rest of the paper as an illustrative example. To this end,
imagine we are watching an agent navigate some environment (e.g.: a shopping mall).
We observe the agent’s first few steps x1, . . . , xt−1, and wish to predict the agent’s
next step xt . Figure1a depicts such a task.

Behavioral inference tasks like these have beenwidely studied through theBayesian
framework. Figure1b depicts a simplified version of a “rational planning model,” a
common generativemodel used to study this capacity (Baker et al., 2009, 2011). Under
a rational planning model, we assume that the agent has some latent goal state G (e.g.:
to acquire a certain type of item), where the parameter� captures the prior probability

1 In the sense that no other strategy can outperform this strategy.
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Fig. 1 Illustration of an action-prediction task (a) and a simplified “rational planning” model for solving
such a task (b). Panel (a) depicts an agent navigating a shopping mall, where each sub-panel depicts
the agent’s next few steps. The observer’s task is to predict the agent’s next steps. Panel (b) depicts a
simplified “rational planning model” (Baker et al., 2009) for solving such a task. Variables in grey boxes
are observed (i.e.: the agent’s previous steps). Variables in circles are posited latents (i.e.: the agent’s goal
state). Variables in blue diamonds are the targets of inference (i.e.: the agent’s next step). Variables without
borders are parameters that, together with the structure of the model, define a joint probability distribution
over all variables in the model

that the agent will have a particular goal (i.e.: the agent’s preferences over different
states of the world). At each step, the agent either moves along a shortest path to the
goal state with probability 1 − β, or moves in a random direction with probability
β. This assumption provides the likelihood term P(xt |G, x1, . . . , xt−1;β) (i.e.: the
probability of taking a particular action, given the agent’s goal and prior actions),
and the parameter � provides the prior distribution over goals P(G;�). Thus, this
model encodes all of the information necessary to compute the posterior distribution
in Eq. 2.1. This general approach- encoding a probability distribution in a generative
model, and manipulating that model via Bayesian inference—has been used to study
nearly every aspect of human cognition, including object perception and categorization
(Kersten et al., 2004; Salakhutdinov et al., 2012; Stengård & Van den Berg, 2019),
language production and interpretation (Degen, 2023; Goodman & Frank, 2016), a
range of intuitive theories such as physics (Smith & Vul, 2013; Xu et al., 2021) and
psychology (Baker et al., 2011; Jara-Ettinger et al., 2016), social reasoning (Davis et
al., 2023; Gershman et al., 2017), and the very process of cognitive development itself
(Gopnik & Wellman, 2012; Perfors et al., 2011; Ullman & Tenenbaum, 2020).

2.2 How rational are we, really?

Despite the success of rational analysis at accurately describing human inferences
across a wide range of domains, there remain concerns (both theoretical and empiri-
cal) about the explanatory capacity of these models. The primary theoretical concern
is tractability: outside of simple cases, the computations underlying optimal statis-
tical analysis are generally intractable, in the sense that the amount of computation
required increases exponentially (or worse) in the size of the input. In causal infer-
ence, for example, the number of possible causal structures over a set of variables
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increases exponentially in the number of variables, and exact Bayesian inference
would require computing the posterior probability (Eq. 2.1) of each possible structure.
Furthermore, many Bayesian cognitive models involve either continuous or infinitely
recursive hypothesis spaces (e.g.: Griffiths & Ghahramani, 2005), rendering exact
inference completely infeasible. Thus, a rationalist explanation of human cognition
must address how we, as cognitive agents, perform these seemingly intractable com-
putations quickly enough to make real-time decision (Jones & Love, 2011).

On the empirical side, there are many cases in which the claims of rationality
underlying this framework don’t seem to manifest in human responses. Indeed, it is
quite well established that human statistical judgments contain systematic errors and
biases (Tversky & Kahneman, 1974) that deviate from the predictions of Bayesian
inference. For example, our estimations are often improperly biased or “anchored”
towards numerical values we have previously considered, even when those values
have no relation to the values we are estimating (Epley & Gilovich, 2006), and we
consistently over-weigh the probability of unlikely events with extreme consequences
(Lichtenstein et al., 1978). Furthermore, there is often a great deal of variability in
human responses, both between and within individuals (Mozer et al., 2008), which
conflicts with the predictions of a rational Bayesian decision-maker. In particular, a
rational Bayesian observer should always “posterior maximize,” i.e.: deterministically
choose the hypothesis with the highest posterior probability. In many cognitive stud-
ies, however, there is significant variability among participants’ responses, and the
overall empirical distribution of these responses tends to match the Bayesian posterior
distribution, a phenomenon known as “posterior matching.” While this may intu-
itively seem like an approximately rational strategy, it has been shown that posterior
matching has (under a computation-level rational analysis) no rational justification,
and should therefore not be interpreted as evidence that people are (approximately)
rational (Eberhardt & Danks, 2011).

2.3 A different kind of rationality

The bounded rationality program seeks to address both the theoretical and empir-
ical challenges to rational analysis with a single conceptual reframing. Whereas
computation-level rational analysismodels agentswith unbounded cognitive resources,
but limited information access, boundedly rational analysis explicitly considers the
limited resources (e.g.: time, memory, etc.) to which the human mind has access. This
new set of constraints introduces a fundamental trade-off: in general, more accurate
solutions require more computation, which in turn makes them more costly. Thus, a
boundedly-rational agent should weigh the benefit of having a more accurate solution
against the increased cost of computing a more accurate solution, and allocate cogni-
tive resources up to the point where the benefit of increased accuracy is outweighed
by the cost.

This reframing has two benefits with respect to the aforementioned concerns. On
the theoretical side, it helps alleviate concerns about intractability by suggesting that
people are not actually performing intractable statistical inferences, but are instead
approximating these computations in a more efficient way. Second, many of these
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approximation methods involve random sampling, often in a fashion that produces
biased or auto-correlated outputs (e.g.: MCMC sampling). Thus, boundedly rational
analysis aims to provide a normative justification for our apparently sub-normative
biases and heuristics, by showing that they actually reflect a rational allocation of
limited cognitive resources. Indeed, many apparent biases in human judgments have
been shown to reflect the behavior of certain kinds of algorithms for approximating
Bayesian inference: our tendency to anchor estimations to previously considered val-
ues, or to base our decisions on a small number of guesses, reflects the optimal behavior
of certain kinds of sampling algorithms when generating additional samples is costly
(Bonawitz et al., 2014; Lieder et al., 2012; Vul et al., 2014). The over-weighting of
unlikely events with extreme consequences reflects optimal sampling behavior for
certain resource-constrained algorithms that approximate Bayesian inference (Lieder
et al., 2018). Posterior-matching can be more rational than posteriormaximizing under
certain constraints on memory (Icard, 2021). Thus, the bounded rationality paradigm
seems to provide a promising resolution to both the theoretical and empirical concerns
levied against the rational analysis framework.

2.4 The scope of boundedly rational cognitive models

The concerns and insights that motivated the bounded rationality paradigm suggest
a certain intuitive approach to deriving boundedly-rational cognitive models. First,
we define a problem (e.g.: predicting an agent’s behavior) at the computation-level,
and compute the optimal solution to that problem for an unbounded observer. In
the Bayesian framework, this means defining a generative model of some relevant
part of the world (e.g.: an agent’s mental states and how those states causally relate
to behavior), and using this model to compute a posterior distribution over possible
answers. However, as these computations are typically intractable, an optimal bounded
agent should approximate this posterior inference as well as is rational,2 given their
cognitive resources.While intuitively appealing, this approach raises several concerns.

The first concern is that approximation does not always solve intractability: for
many commonly occurring statistical inference problems, even approximate solutions
(for any fixed degree of accuracy) cannot be tractably computed in general (Kwisthout
et al., 2011). Even when approximation does enable a tractable solution, it may not
necessarily yield the boundedly optimal solution: in some cases, non-Bayesian heuris-
tics can outperform approximate Bayesian inference with the same limited resources
(Icard, 2018). Thus, even if approximate Bayesian inference is tractable, there is no
guarantee that such an algorithm is actually resource-rational without assuming sub-
stantial restrictions on the observer’s space of plausible algorithms, and the space of
representations over which those algorithms operate.

This leads to a second, more general concern about these models: how do we deter-
mine the appropriate set of cognitive constraints, including how the agent represents
uncertainty for a given problem, and the set of algorithms through which the agent
can manipulate those representations? If our assumptions are too general or minimal,
we risk glossing over important factors that can influence the true “cost” of a solu-

2 I.e.: up to the point where the cost of additional computation exceeds the benefit of additional accuracy.
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tion. For example, one approach is to assert that the agent has a method for drawing
unbiased, independent samples from the relevant posterior distribution at a fixed cost
per sample, while remaining agnostic about the details of the sampling process itself
(e.g.: Bonawitz et al., 2014; Vul et al., 2014). However, generating unbiased, indepen-
dent samples from a posterior distribution often requires just as much computation as
exact posterior inference (or else requires a prohibitive number of random decisions
to approximate). Thus, glossing over the details of the sampling process in this fash-
ion makes it difficult to assess how well this approach can inform a resource-rational
understanding of human cognition.

On the other hand, if our assumptions are too strong, we risk omitting other possible
representations or algorithms that may be more efficient. Another approach, for exam-
ple, is to assume the observer uses a fixed approximation algorithm (e.g.: some form
of MCMC sampling), and evaluate the optimal use of that algorithm (e.g.: the optimal
number of samples to draw) for a particular task representation (e.g.: Dasgupta et al.,
2017; Lieder et al., 2012; Milli et al., 2021). While this exposes the relevant details
of the sampling process, these details are only applicable if humans do, in fact, use
algorithms with the same properties as those assumed in the model. This assumption is
complicated, however, by the fact that there are many approximationmethods than can
be implemented with the same core machinery posited by these models. For example,
given the cognitive machinery required to implement a Metropolis–Hastings algo-
rithm (a form of MCMC algorithm—Robert & Casella, 1999), one could implement a
range of alternate algorithms for approximating the same distribution, including var-
ious forms of exact inference, rejection sampling, particle filters, and other MCMC
algorithms. This fact makes it difficult to assert that one particular approximation
algorithm is the right one to use in an algorithmic-level cognitive model.

In response to these concerns, some have proposed a different approach to under-
standing how resource-bounded agents could solve these seemingly intractable prob-
lems. In particular, this approach suggests that, rather than finding efficient algorithms
for approximating intractable computations, perhaps the mind simply forms represen-
tations for which tractable solutions already exist (e.g.: Correa et al., 2023; Kwisthout
et al., 2011; Tomov et al., 2020). The notion of simplifying representations—rather
than using approximate algorithms over exact representations—is not novel tomachine
learning or computer science. In variational methods, for example, an intractable prob-
abilistic computation is made tractable by approximating the true distribution with a
family of simpler distributions (e.g.: by assuming independence between variables—
Sanborn, 2017). Similarly, certain algorithms for probabilistic graph inference impose
sparsity constraints on the inferred graphs (i.e.: restricting the number of connections
between variables) as a means of trading off representational accuracy for computa-
tional efficiency (Bishop 2006, Chap. 8).

More recently, some authors have suggested that the mind may employ similar
tricks to form tractable mental representations, motivated in part by insights from
parameterized complexity theory (Downey & Fellows, 2012). This approach to com-
plexity theory aims to break down the computational cost of solving a problem into
different “dimensions” that characterize the structure of the problem. That is, suppose
we have a class M of intractable problems, and we identify a set of parameters of
interest K = {k1, . . . , kn} which characterize individual instances of problems within
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this class (e.g.: the number of latent variables in the problem, the number of values that
each variable can assume, etc.). Given these parameters of interest, the aim of param-
eterized complexity analysis is to determine whether it is possible to solve problems
in M efficiently when the values of these parameters are held fixed, even as the size
of the input increases arbitrarily. If this is the case, then the parameters in K are said
to be the source of intractability for M , and M is said to be fp-tractable for K . It
has been shown, for example, that a common class of Bayesian inference problem
which is generally intractable is fp-tractable for two parameters—the maximum num-
ber of latent variables in the network, and the degree of certainty of the most probable
configuration of latent states.

2.5 Moving forward

The previous section suggests two distinct conceptual approaches to boundedly-
rational cognitive modeling. The first starts with a computation-level representation
of a problem (i.e.: a particular generative model), and considers the resource-optimal
algorithm for manipulating that representation (either exactly or approximately). The
second approach starts with a description of a task, and considers what kinds of rep-
resentations enable tractable solutions. This distinction between positing a “task” and
positing a “representation” is a subtle but important one. Consider, for example, the
task illustrated in Fig. 1a. If we characterize the task as one of “goal inference,” as
is common in the Bayesian Theory of Mind literature, this entails certain assump-
tions and restrictions on how an observer represents the task (i.e.: it assumes that the
observer explicitly represents a latent goal state for the agent). On the other hand,
if we simply characterize the task in terms of the relevant inputs (the agent’s envi-
ronment and previous behavior) and outputs (the agent’s next action), this imposes
fewer assumptions on the observer’s representation, and leaves more flexibility for
the observer to “optimize” their representation for that particular task (i.e.: form a
representation for which tractable solutions exist in that context, rather than using the
same kind of representation across all contexts in which that problem occurs).

In the remainder of this paper, we advocate for a unified framework that jointly
optimizes over the representations we employ for solving a task, and the algorithms
we use to manipulate those representations. We present two arguments for such a
framework, each posed at a different conceptual “scale.” In the next section, we will
sketch out a formal framework for performing this joint optimization at the scale of
individual tasks. We will then argue that, even for a fixed task (or a very restricted
space of similar tasks), there may be important interactions between the structure of
our representations and the cost of manipulating these representations via particular
algorithms. Furthermore, by drawing on insights from parameterized complexity anal-
ysis, we can see that the cost of using two different algorithms might not “scale up”
along the same dimensions. That is, if we have a set K of parameters that characterize
a space of representations, and two different algorithms A1 and A2 for manipulating
those representations, there may be cases (as we shall demonstrate in Sect. 3.3) where
parameter k1 ∈ K causes intractability in A1, while a different parameter k2 ∈ K
causes intractability in A2. Thus, choosing an optimal algorithm depends on the struc-
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ture of our representations, but choosing the optimal representation also depends on
the set of algorithms we can use to manipulate it. This creates a bi-directional inter-
action between the choice of how to represent uncertainty in a particular context,
and the optimal choice of algorithm for manipulating that representation. Thus, both
dimensions of optimization can be important even at the scale of individual tasks.

To make the importance of this joint optimization especially salient, however, we
must “zoom out” from the scale of individual, pre-known tasks, and consider the
much more plausible context in which a bounded agent faces a (possibly unknown)
distribution of (possibly very different) tasks. In reality, people face uncertainty across
many different kinds of tasks in their daily lives, as well as uncertainty about which
tasks they will encounter when, and the exact nature of future tasks. Even within the
scope of a single, routine workday, we might have to reason about several different
people whomwe know to varying degrees, across different contexts, each with its own
set of social expectations demanding that we draw different kinds of inferences (e.g.:
“how do I write this report in a way my boss will approve of?” “how do I decline my
coworker’s invitation without hurting their feelings?” “how do I avoid colliding with
this stranger who isn’t paying attention while they walk?”). It would almost certainly
be infeasible for a bounded agent to develop separate, resource-rational solutions for
each individual task theymight encounter. In Sect. 4,wewill consider resource-rational
analysis within the context of this broader problem and identify three additional trade-
offs that become especially relevant at this scale of analysis. Although these trade-offs
are relatively understudied in the literature, we will point to some recent work that
explores these constraints, and sketch out how theymight be incorporated into a unified
theory of bounded rationality. Finally, we argue that such a framework could not only
provide normative justification for why a bounded agent ought to employ certain
strategies, but explain how a bounded agent could actually develop such strategies
from complex, dynamic, and highly uncertain environments.

3 Framework sketch

The analysis we outline in the previous section requires two core components. The
first is a unified framework for formalizing both a space of possible representations of
a task, and a space of possible algorithms for manipulating these representations. As
we show in the following section, PPLs are particularly well suited for this purpose
(Goodman, 2013), and are compatible with the assumptions underlying much of the
current literature on bounded rationality. The second component is a methodology for
computing a cost profile for each algorithm as a function of the representation to which
it is applied. Drawing on parameterized complexity theory, the aim is to identify a set
of relevant dimensions that characterize the different representations within this space,
and compute the cost of each algorithm in terms of these dimensions. This will enable
a joint optimization over representations and algorithms. As we shall argue in Sect. 4,
a full analysis would require dimensions of comparison that are under-studied in the
current literature (e.g.: expectations over future data streams). However, we provide a
case study in Sect. 3.3 which demonstrates that, even when we restrict our analysis to
single task, this optimality analysis can still be fairly non-trivial.
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3.1 Probabilistic programming languages and generative models

APPL extends a deterministic programming languagewith a set of stochastic primitive
functions. For example, we can define a stochastic primitive f li p(w) that returns a
1 with probability w, or a 0 with probability 1 − w, and a function roll(n) which
returns an integer between 1 and n uniformly at random. We can derive more complex
functions from stochastic primitives via composition and recursion. For example, the
program below simulates flipping a coin with bias w, then rolling a three-sided die if
the flip comes up heads, or a six-sided die if the flip comes up tails3:

f li p_and_roll(w){
f = f li p(w)

if ( f == 1) {return roll(3)} else {return roll(6)}
}

Note that, as a probabilistic program, repeated calls to f li p_and_roll(w) with
the same input value will result in a distribution of different output values. However,
the PPL contains an operator that enables analytic computations of these probabilities
as well: for a stochastic primitive function f and a value x in its range, the operator
Prob( f , x) returns the probability that f will output x . Thus, given a stochastic prim-
itive function f , we can analytically compute the distribution it encodes by applying
Prob( f , x) to each x in its range, or we can approximate this distribution by running
f repeatedly on the same input and tabulating the frequency of each output. These
two basic operators enable a range of methods for computing or approximating more
complex distributions. For a purely analytical computation, we can enumerate each
possible execution history of the program and multiply the probabilities associated
with each primitive decision (see Fig. 2a for an example), while a purely stochastic
approximation simply requires repeatedly running the program and tabulating its out-
puts. This also enables a range of intermediate algorithms, by applying the analytical
operator Prob( f , x) to certain primitive randomdecisions, while approximating other
random decisions via sampling.

While this enables a range of algorithms for computing (or approximating) a distri-
bution over outputs, most inference problems of interest involve further manipulation
of this distribution. Suppose, for example, that a program involves some set X of
random variables, including a subset E ⊂ X that we get to observe (e.g.: an agent’s
behavior), and a subset Q ⊂ X that we don’t get to observe (e.g.: an agent’s mental
states). In order to reason about the value of the latent variables Q given the observa-
tions E , we need access to the posterior distribution P(Q|E).With the f li p_and_roll
function, for example, suppose we observe that the die roll R resulted in a value of 1,
and we must infer the result of the initial coin-flip F . At a computational level, this
corresponds to computing the posterior distribution P(F |R = 1). At the algorithmic

3 For these examples, we use a condensed, intuitive pseudocode based on WebPPL, a PPL for generative
models (Goodman et al., 2016).
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Fig. 2 Diagram of procedure for computing the distributions implied by probabilistic programs. Panel (a)
depicts the procedure for computing the full joint distribution over all of model variables. Panel (b) depicts
the procedure for computing a conditional distribution, given the observed value of one model variable.
The probabilities corresponding to the target distribution are highlighted in red. (Color figure online)

level, the basic operators of the PPL enable multiple ways to compute or approximate
the target distribution.

To compute the distribution analytically, we can enumerate each possible execution
history of the program, multiplying the weights of the primitive distribution at each
random choice, and omitting any execution history which violates the observations (in
this case, any history with a die roll not equal to 1). The conditional probability that
the coin flip was heads, given that the die roll was 1, is equal to the total probability
mass of all (non-excluded) executions where the coin flip was heads, divided by the
total probability mass of all executions where the die roll was 1 (see Fig. 2b). This
procedure allows the system to analytically compute any conditional distribution from
any probabilistic program (with finite and discrete outputs).

At the other extreme, we can generate unbiased samples from the posterior distribu-
tion P(Q|E) using a straightforward technique called rejection sampling: we simply
run the program repeatedly until it outputs a value that matches the observation (in this
case, until it results in a die roll of 1), then return the value of the query variable (in
this case, the coin flip) associated with the final execution. Note that the analytic pro-
cedure uses only deterministic computation, but involves no random decisions, while
rejection sampling may involve many random decisions, but involves no deterministic
computation. We can therefore interpret these two algorithms as opposite endpoints
of a spectrum, with fully deterministic algorithms at one extreme and fully stochas-
tic algorithms on the other. Between these two endpoints lie a range of intermediate
methods that can be implemented using the same core machinery, including particle
filters and various Markov Chain Monte Carlo (MCMC) methods. These methods use
a mix of both random decisions and deterministic computation to generate (usually
biased and autocorrelated) samples from the target distribution P(Q|E). This trade-
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Fig. 3 Examples of possible representations for an action-prediction task. Variables shaded in grey are
observed (in this case, the agent’s previous actions).Variable shaded in blue is the target of prediction (agent’s
next action). Variables in ovals are latent states (e.g.: goals). Variables without borders are parameters that
encode the relevant probability distributions (e.g.: probability of taking an action given previous action and
goal). Panel (a) depicts a fully task-dependent model that only represents uncertainty in the target variable.
Panel (b) depicts a simple mentalistic model that posits a single latent goal state. Panel (c) depicts a more
complex mentalistic model that posits a hierarchical goal state with planning over sub-goals

off between deterministic computation and random decisions is just one of several
possible dimensions relevant to our analysis, but we shall focus on this dimension for
our case study in Sect. 3.3, to demonstrate that this trade-off alone entails a non-trivial
optimization problem, even within a fairly restricted problem space.

3.2 Rational representations of uncertainty

The previous section demonstrates how PPLs can simultaneously encode a particular
representation (i.e.: generative model) of a problem, and a set of algorithms for manip-
ulating that representation. It is clear, however, that given a set of stochastic primitives
and arbitrary recursion, we can define a rich space of possible representations for the
same problem. We therefore need some systematic way of comparing these possible
representations. One way of evaluating potential representations is to contrast “task-
dependent” or “opportunistic” representations, which only represent uncertainty in the
decision variable itself, with “constitutive” representations, which explicitly represent
not just the decision variable, but a slew of latent variables thought to be involved in the
causal process that generates the decision variable (Koblinger et al., 2021). Consider
our earlier example, in which we observe an agent’s initial movements x1, . . . , xt−1
through some environmentW , and must then predict the agent’s next move xt . A fully
task-dependent representation for this task would maintain a probability distribution
over xt as a direct function of the input variablesW , x1, . . . , xt−1 (Fig. 3a). Intuitively,
this representation encodes an assumption that the agent follows some fixed “script,”
such that the probability of the next action xt is directly implied by the previous actions.

A constitutive representation, on the other hand, explicitly represents the latent
mental states that are thought to cause the agent’s behavior. For example, Fig. 3c
shows a complex goal model that posits a high-level goal G (e.g.: a certain recipe),
which entails a set of sub-goals g1, . . . , gk that are required to fulfill the high-level
goal G (e.g.: a list of ingredients), which in turn determine the agent’s plan (e.g.: path
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through the grocery store that meets all the required ingredients). Of course, this dis-
tinction between task-dependent and constitutive representations is a graded, rather
than binary notion, and we might consider a range of intermediate representations
that include certain latent states but omit others. For example, Fig. 3b depicts an inter-
mediate representation that posits a single static goal or preference state. Intuitively,
we might interpret this as encoding the assumption that the agent is following one of
several possible “scripts,” and the single goal variable encodes which script the agent
is executing (e.g.: Davis & Jara-Ettinger, 2022).

Given these different representations of the same task, how do we evaluate and
compare them? One obvious dimension is the cost of manipulation: in general, richer
and more constitutive representations are costlier to manipulate and compute than
simpler, more task-dependent representations, though the exact rate at which these
costs scale depends on the nature of the algorithms being used (e.g.: the number of
deterministic computations versus random decisions required). On the other hand,
task-dependent representations tend to be highly inflexible, requiring a distinct rep-
resentation for each possible task, even within a similar context, while constitutive
representations enable much greater generalization and flexibility (Koblinger et al.,
2021). In our action prediction example, althoughwe could predict an agent’s behavior
by memorizing a set of scripts that they tend to follow, it is likely that those scripts
would vary widely across contexts (e.g.: the scripts one follows in the grocery store
are unlikely to be the same scripts one follows at an airport). On the other hand, if
we represent the mental states that cause the agent’s actions, we can generalize those
mental states across contexts (e.g.: knowing that the agent likes hamburgers improves
our ability to predict the agent’s behavior in both a grocery store and an airport). Other
potentially relevant dimensions for comparison include the memory cost of storing
the representation (in particular, how many independent parameters must be stored),
and the amount of data required to effectively learn the representation. The current
literature on bounded rationality has paid considerably less attention to these last three
factors—generalizability, memory requirements, and learnability—focusing primar-
ily on computation time. We will return to this in Sect. 4, when we consider how to
expand the current scope of boundedly rational cognitive modeling to enable a proper
optimality analysis over representations and algorithms.

3.3 Case study: action prediction

We now provide a simple case study to motivate what this analysis might look like.
As described in the previous sections, a fully formalized framework for this joint opti-
mization is beyond the scope of this paper, in part because it will necessarily involve
dimensions of comparison that have been under-explored in the current literature (see
Sect. 4). Thus, rather than a full demonstration, our aim here is to show that, even with
a fairly constrained and simplified problem, and even with only a single dimension
of comparison (deterministic computation versus random decision-making), this opti-
mization can still be quite non-trivial, and may entail different optimal solutions even
for different instantiations of the same basic task. To this end, we return to our action
prediction example, where we observe an agent’s environment W and first few steps
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x̄ = x1, . . . , xt−1, and wish to predict the agent’s next step xt . Of course, there is a
wide range of generative models that one could use to represent this task, and a wide
range of algorithms one could use to manipulate these representations. We will restrict
our analysis to the candidate models shown in Fig. 3, and the two algorithms described
in Sect. 3.1: enumeration, which only involves deterministic computation and no ran-
dom decisions, and rejection sampling, which only involves random decisions and no
deterministic computation.

We shall start with the fully task-dependent model in Fig. 3a: under this model, the
probability that the agent will take action xt is a direct function of the agent’s previous
steps and parameter β: P(xt |x̄;β). Importantly, we are assuming that the observer has
already learned the representation and relevant parameters, so the cost of acquiring
the representation is not currently a factor (though we will return to this in Sect. 4),
and we only consider the cost of manipulating this representation to solve the task. For
the fully task-dependent representation, the cost of manipulation is quite low—in fact,
there is barely any computation required. For an analytic solution, the posterior prob-
ability P(xt |x̄;β) for any xt is already stored in the parameter vector β, so computing
this probability exactly involves a single step (essentially, looking up the correspond-
ing probability). Similarly, we can obtain an unbiased sample from P(xt |x̄;β) with
a single random decision. Thus, the fully task-dependent representation enables an
extremely efficient solution that only requires a single computation or random deci-
sion. Of course, this is not the full story: in order to enable such efficient computation,
we must store a significant number of independent parameter values in β (essentially,
one vector for each possible sequence of previous actions x1, . . . , xt−1). Furthermore,
this representation is specific to one particular environment, so our knowledge of these
parameters is unlikely to be of any use in a slightly different context.

On the other end of the spectrum, we shall now consider the cost of manipulating
the complex goal model (Fig. 3c) for solving this task.4 For an unbounded observer
with this representation, predicting the agent’s next action requires marginalizing out
the latent goal variables, i.e.:

P(xt |x̄) =
∑

g1,...,gk

P(xt |xt−1, g1, . . . , gk)P(g1, . . . , gk |x̄)

Intuitively, this requires computing, for each combination of sub-goals g1, . . . , gk ,
the probability that the agent would take action xt , given those sub-goals, weighted by
the posterior probability that the agent has those sub-goals, given their prior behavior.
The term P(xt |xt−1, g1, . . . , gk) is already encoded into themodel by the parameterβ,
so the bulk of thework is to compute P(g1, . . . , gk |x̄) for each possible combination of
sub-goals. Thus, analytically computing P(xt |x̄) for a single value of xt involves Mk

total computations, whereM is the number of values that each sub-goal variable gi can
assume, and k is the number of possible sub-goals. The cost of the fully deterministic
solution using this representation therefore grows exponentially in the number of sub-
goals k.

4 We omit the analysis for the intermediate model in Fig. 3b, as this is essentially a special case of Fig. 3c
where the number of sub-goals k is fixed to 1.
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Now we contrast this against the cost of obtaining a single unbiased sample of
P(xt |x̄) via rejection sampling, which does not involve any deterministic compu-
tation, and only involves random decisions. Recall that rejection sampling involves
repeatedly running the generative model “forward” until we obtain a sample for which
the observable variables x1, . . . , xt−1 have the same values that we have observed in
x̄ , then observing the value of the target variable xt . A single forward run of this model
involves first sampling the sub-goal vector g1, . . . , gk from the goal prior�, then sim-
ulating the agent’s behavior for t steps. Of course, we cannot precisely compute the
number of samples required before we obtain one that matches our evidence. However,
it is straightforward to compute that, on average, we should expect to generate 1/P(x̄)
samples before we obtain one that matches, where P(x̄) is the overall probability of
the evidence x̄ . Thus, obtaining a single unbiased sample of P(xt |x̄) via rejection sam-
pling requires an average of 1/P(x̄) samples from the forward model, each of which
involves k + t random decisions. Of course, this is not the full story, as the analytic
solution is always guaranteed to provide the correct answer, while rejection sampling
only gives us a single unbiased sample from the predictive distribution P(xt |x̄). The
full analysis would require somemeasure for the value of accuracy—that is, howmuch
does it cost to get the wrong answer?

Although we cannot properly establish which strategy is optimal without this extra
piece of information, the present analysis is still sufficient to draw some useful conclu-
sions: first, while the cost of analytically computing P(xt |x̄) grows exponentially in the
number of sub-goal states k, the cost of generating an unbiased sample from P(xt |x̄)
is only polynomial in the number of sub-goals. On the other hand, the cost of an unbi-
ased sample grows exponentially in the surprisal of the evidence (i.e.: −log(P(x̄)),
while the cost of an analytic solution is completely independent of the probabilities.
Thus, even within this fairly restricted example, we see an important trade-off emerge:
as our representations become richer and involve a larger number of interconnected
latent variables, the cost of analytic computations grows exponentially, while the cost
of generating unbiased samples only grows in polynomial time. On the other hand,
as the surprisal of the evidence increases, the cost of generating an unbiased sample
grows exponentially, while the cost of an analytic solution remains constant. This
suggests that deeper and richer representations may be most efficiently manipulated
via algorithms that rely more heavily on random decisions, while flatter and simpler
representations enable more efficient analytic solutions.

4 What’s missing?

The previous section outlines the general requirements for the sort of analysis frame-
work we advocate, and demonstrates that, even with a simplified toy problem, there
are non-trivial interactions between how we represent the uncertainty in the problem
(e.g.: the latent depth of the generative model) and the optimal way to manipulate
that representation (e.g.: via deterministic computation or unbiased sampling). How-
ever, it should be clear that the analysis in this simple demonstration is not the full
story. After all, our analysis showed that the cost of computing the solution via the
fully task-dependent representation is constant, so wemight expect a resource-rational
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observer to always form fully task-dependent representations. It is well established,
however, that humans regularly represent uncertainty beyond the decision variable
alone (Denison et al., 2018; Houlsby et al., 2013). Indeed, the analysis in the previ-
ous section ignores several other factors that are clearly relevant, such as the amount
of memory required to store a task-dependent representation (which may require a
very large number of independent parameters), or the time it takes to learn the rele-
vant parameters (which may require a very large amount of data). The importance of
these factors becomes especially salient when we consider the broader problem of a
bounded agent navigating a complex, dynamic environment involving many different
types of tasks, especially if there is uncertainty about which tasks will appear when.
In this context, it is almost certainly infeasible for the agent to develop optimized,
task-specific representations for each task they might encounter.

In this section, we highlight three additional constraints that become relevant in the
context of this more general problem.Wemotivate the trade-offs that these constraints
introduce to a bounded rationality analysis, and point to some recentwork that explores
how bounded cognitive agents might plausibly manage these trade-offs. We conclude
the section by motivating how these constraints might be integrated into a unified
framework for resource-rational analysis, and how such a framework could provide
greater explanatory power than earlier approaches.

4.1 Memory

While much of the existing literature on resource-rationality has focused on com-
putation time, another important cognitive constraint is memory. Within the context
of a single task, we can interpret this constraint in terms of the number of indepen-
dent parameter values that must be maintained in order to store a representation. In
general, we can trade off computation time for memory by storing the output of a
particular computation as a fixed parameter value. On an intuitive level, the fully task-
dependent representation is only able to achieve such computational efficiency by
making an extreme trade-off: rather than relying on internal computations to predict
the probability of an action given previous actions, this representation stores all of
these probabilities as fixed parameter values. Thus, in order to maintain this represen-
tation for a particular task, one must store a separate, independent parameter vector for
each possible state-sequence x1, . . . , xt−1. In some contexts, this might be feasible:
suppose, for example, that we are watching an agent navigate a very small grocery
store with only three stands, and we know that we will only ever observe the agent
in this particular environment. In this case, it may be perfectly tractable to simply
memorize the agent’s most frequent trajectories through the store, and avoid having
to compute anything about the agent’s internal states.

Outside of a highly constrained environment, however, this strategy would likely
impose prohibitive memory requirements, as the observer would need to memorize a
large list of parameters for each individual context (e.g.: for every different environ-
ment we observe the agent traverse). This highlights the first major benefit of a more
constitutive representation: by leveraging a richer representation of the latent variables
and processes that generate observable behavior, we can drastically reduce the num-

123



Synthese (2024) 203 :142 Page 19 of 30 142

ber of independent parameter values that must be stored. For example, the complex
goal model in Fig. 3c requires a single parameter vector for the agent’s goals (e.g.:
the agent’s preferences over possible goal states), and a single parameter that captures
the agent’s degree of “noisiness” when executing a plan (e.g.: how deterministically
they follow the most efficient path). Thus, richer and more constitutive representations
can drastically decrease the memory requirements for storing a representation at the
expense of increased computation costs for manipulating the representation. On the
other hand, if a particular computation is especially time-consuming, it may be bene-
ficial to store the output of that computation as its own parameter, thus bypassing the
need to recompute it in the future. In computer science, this technique is known as
“memoization,” and can significantly improve the efficiency of probabilistic compu-
tations (Pfeffer, 2007).

When we zoom out from the context of a fixed task, memory constraints introduce
a second type of trade-off relevant to the bounded cognitive agent. In particular, rather
than learning a completely new representationwhenever a novel type of task is encoun-
tered, an agent could store previously generated representations in memory and draw
on those as a “starting point” for new tasks. The effectiveness of this strategy depends
on the generalizability of the stored representations (see Sect. 4.3): a representation
that is only useful in a very limited context may not be worth the extra storage space to
retain. On the other hand, overly general representations might be of limited use in any
one specific context, or require significant additional adaptation to utilize in a specific
context. Some recent work explores how bounded cognitive agents could effectively
manage this trade-off through a kind of “representational caching” (e.g.: Dechter et
al., 2013; Zhao et al., 2023). In these frameworks, a bounded agent generates new
candidate representations by sampling them from a probabilistic grammar, then eval-
uates how well that representation supports a particular task (or set of tasks). As new
representations are generated, theymay, with some probability dependent on their per-
formance, be stored in memory and recalled in subsequent iterations. These “adaptor
grammars” (Johnson et al., 2006) thereby enable a bounded agent to trade-off memory
(i.e.: storing additional rules and representations in a grammar) for computation time
(i.e.: bypassing the need to regenerate and recompute those representations), and recent
experimental work has shown that these models can replicate certain order-effects and
other sub-optimalities that manifest in human concept learning (e.g.: Fränken et al.,
2022; Zhao et al., 2023).

4.2 Learnability

A second constraint that was glossed over in Sect. 3 is learnability. In the example
from 3.3, we assumed that the observer already had access to fully parameterized
versions of each representation. Thus, this analysis ignored the cost of learning these
representations in the first place (i.e.: inferring the values of relevant parameters). In
reality, however, the cost of learning a representation may be a significant factor in
deciding how to represent uncertainty in a task. In general, richer andmore constitutive
representations can be learned more quickly, and often from less data, than fully-
task dependent representations, a phenomenon sometimes referred to as the “blessing
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of abstraction” (Goodman et al., 2011). There are two high-level reasons for this
difference: first, in a fully task-dependent representation, the only data relevant for
learning the representation are data observed in same context being represented. For
example, if we represent an agent’s trajectories through an environment as an explicit
distribution over trajectories, the only data useful for inferring that distribution are
observations of the trajectories themselves. On the other hand, if we also represent the
agent’s mental states, we can integrate information from across multiple contexts to
learn the relevant parameter values. For example, if we explicitly represent an agent’s
preferences (rather than a direct distribution over trajectories), we can leverage data
from multiple contexts (e.g.: any context in which the agent makes a choice of what
to eat) to infer the parameter values that capture the agent’s preferences.

A second difference is that task-dependent representations require fully labelled
data (e.g.: observation of the agent’s full trajectory), while constitutive representa-
tions can leverage unlabelled data as well (Koblinger et al., 2021). For example,
suppose we observe the agent go to the dairy counter, then take two more steps in
another direction, but we don’t get to observe the rest of the trip. Using a mentalistic
model of the agent’s behavior, an observer could infer a posterior distribution over
the agent’s possible goals, based on the partial trajectory, then use that inferred goal
distribution to predict the probability of each possible next step. The observer could
then update the parameters in the model by averaging over all possible completions
of the trajectory, weighted by the posterior probability of that trajectory. Intuitively,
this means that the observer can use the latent causal processes encoded in the rep-
resentation to simulate the missing portion of the data, and use that simulated data
to perform additional learning. Thus, even though task-dependent representations are
more efficient to manipulate, they generally require more data, more specific data, and
more labelled data in order to learn, compared to constitutive representations. This
shows that choosing the optimal representationmay depend in part on our expectations
about the availability and cost of future data. Furthermore, a learner may have some
influence over which evidence they observe when, which they can potentially exploit
to improve the efficiency of learning. In causal learning, for example, a learner may
be able to choose which interventions to apply. Given the set of causal hypotheses
the learner is currently considering, certain interventions will provide more decisive
evidence than others. Recent work on “active learning” shows that people are able to
identify informative interventions in causal learning tasks (e.g.: Bramley et al., 2017;
Coenen et al., 2015), suggesting another method that bounded cognitive agents might
employ to manage this learnability trade-off.

In addition to the availability of new evidence, representation learning is also
constrained by the computational cost of incorporating new evidence into the repre-
sentation. In general, suppose our representation is parameterized by some parameter
vector �. In order to learn the relevant parameter values from some evidence E , a
Bayesian observer must compute the posterior probability P(�|E) ∝ P(E |�)P(�),
which typically requires computing the likelihood function P(E |�) (i.e.: the prob-
ability of observing evidence E , given the true parameter values �). For complex
representations with many latent states, computing this likelihood is often intractable,
thus imposing a restrictive cost on the process of incorporating new evidence into the
observer’s representation, independent of the cost of obtaining that evidence. Thus,
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although constitutive models can typically be learned from less data, they may be be
costlier to update from that data. Some recent work draws on tools from Bayesian
statistics to explore how a bounded agent could tractably incorporate new evidence
into a complex representation. These models leverage “likelihood-free inference,” a
class of methods for approximating Bayesian inference without directly computing
the likelihood function, instead relying on summary statistics that are easier to com-
pute (e.g.: Gutmann & Cor, 2016). Similar approximation methods have been used
to develop algorithmic-level models of causal and physical learning in from temporal
data, which replicate certain patterns of suboptimality in human inference (Gong &
Bramley, 2023; Ullman et al., 2018).

4.3 Generalizability

Perhaps the most crucial factor that the task-specific perspective from Sect. 3 failed
to highlight is generalizability. While a task-dependent representation can enable effi-
cient solutions for one particular context, it is ill-suited for generalizing beyond that
context. For example, memorizing an agent’s most frequent behavior trajectories in
a particular environment will enable fast, efficient prediction of the agent’s behavior
in that environment. However, this strategy would require learning and memorizing a
whole new set of trajectories for every new environment (and agent) we observe. On
the other hand, by representing the latent states that cause the agent’s behavior, we
can generalize to new contexts much more effectively: if, instead of memorizing the
agent’s behavior, we represent the agent’s preferences and use our model to compute
the agent’s behavior, we can utilize our representation across a much wider range of
contexts, even if it requires somewhat more computation within each context. Thus,
we must manage another trade-off: do we develop a larger set of more task-specific
representations, or a smaller set of richer andmore flexible representations?Managing
this trade-off requires careful attention to the distribution of tasks and domains that
we expect to face, even more so than the previously discussed constraints.

One potential approach for managing this trade-off is to model the broader learning
problem directly: rather than considering a set of problems in which we learn indi-
vidual representations for solving individual tasks, we consider the unified problem
of learning a collection of representations for one or more domains of tasks simulta-
neously. Hierarchical Bayesian models have proven tremendously useful for this type
of learning, enabling an observer to simultaneously learn a set of representations at
multiple levels of abstraction from data collected across multiple domains. For exam-
ple, Goodman et al. (2011) derive a model that simultaneously learns a set of causal
models for specific domains, and a higher-order “theory” of causality that constrains
the lower-level models. In a similar vein, Kemp and Tenenbaum (2008) propose a
hierarchical model of “structure-learning,” which simultaneously learns a set of latent
data structures from data collected across multiple domains, and a higher order dis-
tribution over latent structure types that constrains the lower-level representations.
More recent work has explored how bounded cognitive agents could efficiently learn
a dynamic library of representations for solving a range of different tasks (e.g.: Bram-
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ley et al., 2023; Zhao et al., 2023), suggesting another potential strategy for managing
this representational trade-off.

4.4 Putting it all together: the value of representation

While a full specification of a framework that unifies all of these trade-offs is beyond
the scope of this paper, we can motivate how this might be done by looking toward
some recent work. In a standard approach to resource rational analysis, we consider
some task t , and a setA of possible algorithms for solving the task. These algorithms
may differ in both the reward they yield if applied to this task (e.g.: how accurately
or consistently they produce the right answer), which we can denote by R(a, t) for
a ∈ A, as well as the cost of implementing the algorithm in the task, which we can
denote by C(a, t). The overall utility derived from applying algorithm a to task t is
thus U (a, t) = R(a, t) − C(a, t), and the resource-optimal algorithm for solving the
task is defined as a∗ = argmaxaU (a, t) (Lieder & Griffiths, 2020). We can then
generalize this to account for potential uncertainty about the distribution of tasks we
will face. If we have some belief about the set T of possible tasks, and the probability
P(t) that we will face a certain task t ∈ T , we can compute the expected utility of
applying algorithm a as

EUP (a) =
∑

t

U (a, t)P(t) (4.1)

and define the optimal algorithm as a∗ = argmaxaEUP (a).
In this context, our proposal requires generalizing this optimization to a space R

of possible representations for tasks in T , and a set A of algorithms for manipu-
lating those representations. For a fixed representation r ∈ R, we can extend the
above definitions to R(a, r , t), C(a, r , t), and U (a, r , t), to respectively define the
reward, cost, and overall utility of applying algorithm a to representation r for task
t . We can then define the overall utility of representation r for solving task t as
U (r , t) = maxaU (a, r , t) (i.e.: the utility obtained by applying the best algorithm for
that representation). Similarly, for a given distribution over tasks P(t), we can define
the expected utility of a representation for solving those tasks as

EUP (r) =
∑

t

U (r , t)P(t) (4.2)

If P(t) is highly concentrated on a small set of similar tasks, it may be more efficient
to use a cheaper, task-dependent representation. On the other hand, if P(t) has non-
trivial support over a large set of different tasks, we may require a richer but more
generalizable representation to adequately solve those tasks.

Importantly, the standard cost function C(a, r , t) only captures the cost of an
implementation—that is, the cost of applying a to r to solve a single instance of
t . However, two of the “costs” described in the previous section apply outside the
scope of a particular implementation: the cost of maintaining the representation r in
memory (i.e.: the number of independent parameter values required), and the cost of
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learning the representation (i.e.: inferring the values of those parameters). These costs
are specific to the representation itself, and are independent of the algorithm used
to manipulate that representation, or the task(s) for which the representation applies.
Thus, when computing the expected utility of the representation, these costs would
appear outside the scope of the expectation operator, i.e.:

EUP (r) =
(

∑

t

U (r , t)P(t)

)
− Cmem(r) − Clearn(r) (4.3)

The normative solution to the bounded agent’s optimization problem is then given by
the representation (or set of representations) that optimizes this expected utility.

While this motivates how the standard bounded rationality framework could be
generalized to optimize over representations, there remain two significant conceptual
challenges to this account. The first is that computing this expected utility requires full
knowledge of the space of possible taskswemay encounter, and the probability that we
will encounter a given task. In reality, however, this assumption rarely holds. Indeed,
one of the main motivations for this line of research is to explain how humans can so
effectively adapt to completely novel or unexpected contexts, and how we can quickly
identify efficient (if not globally optimal) representations for solving those tasks. Thus,
the first challenge is how this approach can account for the “unknown unknowns:” we
can’t always knowwhat we don’t know about future possibilities. A second remaining
challenge is how we efficiently navigate the massive space of possible representations
(or worse, the space of possible libraries of representations). After all, the motivation
behind this approach to cognitivemodeling is the observation that humans have limited
cognitive resources. If the normative solution to this problem requires yet another
massively intractable optimization, then what does this account really explain? To put
this problem another way: if the mind really is an “adaptive toolbox” of heuristics
that we can flexibly combine and adapt to novel contexts (Gigerenzer & Todd, 1999),
then the overall value of any given toolbox should be captured by something like Eq.
4.3. But if this optimization is itself intractable, how does a bounded cognitive agent
develop such a toolbox, and how does that agent flexibly combine and adapt their tools
to novel contexts?

Some recent work seeks to resolve this tension by showing how we can leverage
general purpose algorithms to dynamically generate a toolbox of useful representations
in an efficient way (e.g.: Bramley et al., 2017, 2023; Dasgupta et al., 2017; Fränken
et al., 2022; Zhao et al., 2023). These accounts incorporate many of the strategies
described in the previous three sections tomanage the key trade-offs we have identified
thus far. In particular, they leverage representational caching to store previously used
representations in memory for efficient re-use in future tasks; they leverage structured,
dynamic priors (e.g.: adaptor grammars) to learn an ensemble of representations for
multiple contexts simultaneously; they make use of local sampling methods (e.g.:
MCMC) to incrementally adapt existing representations for new contexts; and they
employmultiple strategies to allow for efficient parameter learning, such as adaptively
selected interventions to generate informative evidence, and efficient approximations
for incorporating that evidence into our representations.
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These accounts therefore take a crucial step beyond the scope of early research into
bounded rationality. In particular, earlier work aimed to show why human reasoning is
biased in certain systematic ways, by arguing that these biases and heuristics are opti-
mal in another sense—they reflect optimally efficient approximations of normatively
ideal solutions (e.g.: Lieder et al., 2012; Parpart et al., 2018; Vul et al., 2014). As we
have argued, however, the lack of clarity about the proper scope of this analysis left it
unclear as to how humans develop these biases, especially given that the computations
required to derive these optimal approximations are themselves largely intractable.
However, by drawing on a much more general set of representational and algorithmic
tools, this new line of research makes valuable progress towards answering the crucial
“how” question.

5 Discussion and future work

Bounded rationality is a promising research program that seeks to resolve a long-
standing tension in cognitive science and psychology. On the one hand, the rational
analysis paradigm has proven a tremendously useful tool for studying how humans
deal with uncertainty. Across a wide range of contexts, human judgments seem to
reflect (approximately) rational statistical inference, and rationalist cognitive mod-
els have been used to provide computation-level accounts for nearly every aspect
of human cognition (Griffiths et al., 2008; Oaksford & Chater, 2007). On the other
hand, a computation-level rational analysis does not explain how people are able to
perform these seemingly intractable computations, nor does it explain the seemingly
sub-rational biases and errors we systematically display across a wide range of infer-
ence tasks (Epley & Gilovich, 2006; Lichtenstein et al., 1978; Mozer et al., 2008;
Tversky & Kahneman, 1974). The bounded rationality paradigm seeks to resolve this
tension by considering the limited cognitive resources with which real-world human
minds operate, and justifying our apparently sub-rational biases as the rational allo-
cation of limited resources.

However, it is difficult to determine the appropriate scope of focus for boundedly
rational cognitive models. Early work in the field aimed to characterize an inference
problem and its optimal solution at the computational-level, then consider algorithms
for tractably approximating that solution. As we and others have argued, however, this
approach is neither immediately demanded nor immediately justified by the assump-
tions of bounded rationality. First, approximation does not, in general,make intractable
problems tractable: in many cases, approximate solutions can be just as prohibitively
expensive as exact solutions (Kwisthout et al., 2011). Even in cases where approxima-
tion is tractable, there is no general guarantee that approximating the optimal solution
is more rational or efficient than some other context-specific heuristic (Icard, 2018).
Furthermore, there are many different ways that an agent could represent uncertainty
in a given task, and many different algorithms for manipulating those representations,
all of which could be implemented using the same cognitive machinery typically
assumed by these models. This issue is especially salient when we zoom out from the
perspective of a single task, and consider the broader problem of navigating a complex,
dynamic environment with uncertainty about the nature of future tasks. Thus, we argue
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that this approach may unnecessarily limit our search for plausible cognitive models,
and in doing so, limits its usefulness as a genuine explanation of human cognition. In
short, we argue that traditional approaches may help us justify why humans should
use the heuristics they do, but falls short of explaining how humans actually develop
these heuristics given limited cognitive resources.

For this reason, we advocate for a more pluralistic approach to boundedly rational
cognitive modeling, where we consider the representational and computational primi-
tives to which an agent has access, and optimize over the full space of representations
and manipulations that could be implemented with those primitives. In Sect. 3, we
demonstrated how, even with a fairly simple and restricted task space, there are non-
trivial interactions between the way we represent uncertainty (e.g.: the richness of the
latent structure encoded in our representations) and the cost of manipulating those
representations via different algorithms (e.g.: via exact enumeration or unbiased sam-
pling). In Sect. 4, we considered the higher level problem of optimizing for multiple
tasks across multiple (potentially unknown) domains, and identified three additional
constraints that, while highly relevant in this context, have been relatively understud-
ied in the early bounded rationality literature. We then pointed to recent work that
has begun to take these additional constraints more seriously, described the progress
they have made towards understanding how bounded cognitive agents can develop
and adapt their representations for novel contexts, and motivated what a universal
framework for balancing these trade-offs might look like.

The arguments we presented point to some important future work, both theoretical
and empirical. On the theoretical side, our notion of “value of representation” will
require some additional work to fully formalize and implement. In particular, inte-
grating memory constraints into a unified notion of cost may be challenging. This is
partially due to the fact that memory constraints are spatial in nature, while computa-
tional constraints are typically calculated in terms of time. Furthermore, memory can
impose different kinds of constraints depending on the type of representations being
used.Whenmaximizing a posterior distribution analytically, for example, even though
the agent must compute the posterior probability for each possible answer, they need
only remember one possible answer at a time—if a new answer is determined to have
a higher posterior probability than the previously remembered answer, the agent is
free to “forget” the previous answer and only retain the new one. On the other hand, if
the agent is, say, approximating the distribution with a set of samples, then the agent’s
memory limitation will directly constrain the number of samples the agent can retain,
and thus the accuracy of the approximation. In future work, it will be important to
consider how memory limitations fit into this broader analysis framework, and some
recent work has already begun to investigate this issue (e.g.: Patel et al., 2020). Addi-
tionally, the cost of learning a representation may be highly dynamic and depend on
our knowledge or expectations about the distribution of environments we will face,
and the availability (and cost) of relevant data in those environments. Finally, while
recent workwith adaptor grammars has shown how a bounded agent can learn a library
of representations through local, incremental changes, these incremental changes will
likely affect the cost of manipulation via different algorithms. For example, as our rep-
resentations become incrementally deeper (i.e.: more latent variables), they become
incrementally costlier to manipulate analytically. Thus, future work may explore how
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to augment these frameworks so that they can incrementally develop both a library
of representations, and a library of algorithms for manipulating those representations
in the context of specific tasks. This would further our theoretical understanding of
how a bounded agent could tractably learn to navigate a highly dynamic, complex,
potentially unknown environment.

On the empirical side, this pluralistic modeling approach suggests several direc-
tions for future research. First, although there is some behavioral and neural evidence
that people can represent uncertainty in multiple ways (e.g.: Denison et al., 2018;
Houlsby et al., 2013), there is little empirical work that explores how flexibly people
can adjust their representations in response to specific task demands or environments.
Several recent papers have highlighted the importance of measuring how experimental
subjects spontaneously represent experimental stimuli (e.g.: Davis, 2021; Szollosi et
al., 2023), and Koblinger et al. (2021) outline a general approach to behavioral stud-
ies into the task-specificity of people’s cognitive representations. A similar approach
could be leveraged to investigate the flexibility of those representations across differ-
ent task environments. This also suggests several experimental manipulations worth
investigating through these frameworks, such as participants’ expectations about the
availability of future data, or the distribution of environments in which they will need
to make judgments.

Furthermore, these insights may lead to novel predictions about when we expect
people to rely on sampling-based approximations versus exact computation. The case
study we presented in Sect. 3.3 suggests such a study: if, as current work suggests,
the variability in human responses reflects an underlying sampling process, then an
agent who solves a problem exactly should display significantly less variance in their
responses than an agent who approximates a solution via sampling. We can therefore
leverage this principle to derive testable hypotheses about how people manipulate
different representations of uncertainty. Some work has already demonstrated that
people can be motivated to make more accurate inferences with less variability by
increasing the potential payout of a correct answer (Vul et al., 2014) or increasing
the noisiness of a stimulus (Hamrick et al., 2015). Given the principle that richer
representations are more costly to manipulate analytically, it should also be the case
that increasing certain parameters of an inference problem (e.g.: the number of possible
hidden states or the likelihood of an observation) beyond a certain threshold should
induce a switch from exact computation to approximation, or vice versa. Such a switch
would be characterized by a sharp increase or decrease in response variability as a
problemmoves above or below one of these thresholds. Thus, theoretical development
of this framework will both necessitate and generate a plethora of novel behavioral
studies.
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